Mister Exam

Derivative of tan(x)*cot(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(x)*cot(x)
tan(x)cot(x)\tan{\left(x \right)} \cot{\left(x \right)}
tan(x)*cot(x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=tan(x)f{\left(x \right)} = \tan{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Now plug in to the quotient rule:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    g(x)=cot(x)g{\left(x \right)} = \cot{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

        cot(x)=1tan(x)\cot{\left(x \right)} = \frac{1}{\tan{\left(x \right)}}

      2. Let u=tan(x)u = \tan{\left(x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

        1. ddxtan(x)=1cos2(x)\frac{d}{d x} \tan{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}

        The result of the chain rule is:

        sin2(x)+cos2(x)cos2(x)tan2(x)- \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

      Method #2

      1. Rewrite the function to be differentiated:

        cot(x)=cos(x)sin(x)\cot{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)} and g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        Now plug in to the quotient rule:

        sin2(x)cos2(x)sin2(x)\frac{- \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}

    The result is: (sin2(x)+cos2(x))cot(x)cos2(x)sin2(x)+cos2(x)cos2(x)tan(x)\frac{\left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \cot{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan{\left(x \right)}}

  2. Now simplify:

    00


The answer is:

00

The graph
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
The first derivative [src]
/       2   \          /        2   \       
\1 + tan (x)/*cot(x) + \-1 - cot (x)/*tan(x)
(tan2(x)+1)cot(x)+(cot2(x)1)tan(x)\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + \left(- \cot^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)}
The second derivative [src]
  /  /       2   \ /       2   \   /       2   \                 /       2   \              \
2*\- \1 + cot (x)/*\1 + tan (x)/ + \1 + cot (x)/*cot(x)*tan(x) + \1 + tan (x)/*cot(x)*tan(x)/
2((tan2(x)+1)(cot2(x)+1)+(tan2(x)+1)tan(x)cot(x)+(cot2(x)+1)tan(x)cot(x))2 \left(- \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) + \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)} + \left(\cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)}\right)
The third derivative [src]
  //       2   \ /         2   \          /       2   \ /         2   \            /       2   \ /       2   \            /       2   \ /       2   \       \
2*\\1 + tan (x)/*\1 + 3*tan (x)/*cot(x) - \1 + cot (x)/*\1 + 3*cot (x)/*tan(x) - 3*\1 + cot (x)/*\1 + tan (x)/*tan(x) + 3*\1 + cot (x)/*\1 + tan (x)/*cot(x)/
2((tan2(x)+1)(3tan2(x)+1)cot(x)3(tan2(x)+1)(cot2(x)+1)tan(x)+3(tan2(x)+1)(cot2(x)+1)cot(x)(cot2(x)+1)(3cot2(x)+1)tan(x))2 \left(\left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} - 3 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} - \left(\cot^{2}{\left(x \right)} + 1\right) \left(3 \cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}\right)
The graph
Derivative of tan(x)*cot(x)