Mister Exam

Other calculators

Derivative of sqrt((1-cos2x)/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ______________
   / 1 - cos(2*x) 
  /  ------------ 
\/        2       
$$\sqrt{\frac{1 - \cos{\left(2 x \right)}}{2}}$$
sqrt((1 - cos(2*x))/2)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          So, the result is:

        The result is:

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  ___   ______________         
\/ 2 *\/ 1 - cos(2*x)          
----------------------*sin(2*x)
          2                    
-------------------------------
          1 - cos(2*x)         
$$\frac{\frac{\sqrt{2} \sqrt{1 - \cos{\left(2 x \right)}}}{2} \sin{\left(2 x \right)}}{1 - \cos{\left(2 x \right)}}$$
The second derivative [src]
      /        2                    \
  ___ |     sin (2*x)               |
\/ 2 *|- ---------------- + cos(2*x)|
      \  2*(1 - cos(2*x))           /
-------------------------------------
             ______________          
           \/ 1 - cos(2*x)           
$$\frac{\sqrt{2} \left(\cos{\left(2 x \right)} - \frac{\sin^{2}{\left(2 x \right)}}{2 \left(1 - \cos{\left(2 x \right)}\right)}\right)}{\sqrt{1 - \cos{\left(2 x \right)}}}$$
The third derivative [src]
      /                            2        \         
  ___ |      3*cos(2*x)       3*sin (2*x)   |         
\/ 2 *|-2 - ------------ + -----------------|*sin(2*x)
      |     1 - cos(2*x)                   2|         
      \                    2*(1 - cos(2*x)) /         
------------------------------------------------------
                     ______________                   
                   \/ 1 - cos(2*x)                    
$$\frac{\sqrt{2} \left(-2 - \frac{3 \cos{\left(2 x \right)}}{1 - \cos{\left(2 x \right)}} + \frac{3 \sin^{2}{\left(2 x \right)}}{2 \left(1 - \cos{\left(2 x \right)}\right)^{2}}\right) \sin{\left(2 x \right)}}{\sqrt{1 - \cos{\left(2 x \right)}}}$$