Mister Exam

Other calculators


y=tanh^-1(1-2x)

Derivative of y=tanh^-1(1-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      1      
-------------
tanh(1 - 2*x)
$$\frac{1}{\tanh{\left(- 2 x + 1 \right)}}$$
d /      1      \
--|-------------|
dx\tanh(1 - 2*x)/
$$\frac{d}{d x} \frac{1}{\tanh{\left(- 2 x + 1 \right)}}$$
The graph
The first derivative [src]
          2          
2 - 2*tanh (-1 + 2*x)
---------------------
        2            
    tanh (1 - 2*x)   
$$\frac{- 2 \tanh^{2}{\left(2 x - 1 \right)} + 2}{\tanh^{2}{\left(- 2 x + 1 \right)}}$$
The second derivative [src]
  /             2          \                       
  |    -1 + tanh (-1 + 2*x)| /         2          \
8*|1 - --------------------|*\-1 + tanh (-1 + 2*x)/
  |          2             |                       
  \      tanh (-1 + 2*x)   /                       
---------------------------------------------------
                   tanh(-1 + 2*x)                  
$$\frac{8 \left(1 - \frac{\tanh^{2}{\left(2 x - 1 \right)} - 1}{\tanh^{2}{\left(2 x - 1 \right)}}\right) \left(\tanh^{2}{\left(2 x - 1 \right)} - 1\right)}{\tanh{\left(2 x - 1 \right)}}$$
The third derivative [src]
   /                                                3                           2\
   |                          /         2          \      /         2          \ |
   |          2             3*\-1 + tanh (-1 + 2*x)/    5*\-1 + tanh (-1 + 2*x)/ |
16*|2 - 2*tanh (-1 + 2*x) - ------------------------- + -------------------------|
   |                                 4                           2               |
   \                             tanh (-1 + 2*x)             tanh (-1 + 2*x)     /
$$16 \left(- 2 \tanh^{2}{\left(2 x - 1 \right)} + \frac{5 \left(\tanh^{2}{\left(2 x - 1 \right)} - 1\right)^{2}}{\tanh^{2}{\left(2 x - 1 \right)}} + 2 - \frac{3 \left(\tanh^{2}{\left(2 x - 1 \right)} - 1\right)^{3}}{\tanh^{4}{\left(2 x - 1 \right)}}\right)$$
The graph
Derivative of y=tanh^-1(1-2x)