The first derivative
[src]
2
2 - 2*tanh (-1 + 2*x)
---------------------
2
tanh (1 - 2*x)
$$\frac{- 2 \tanh^{2}{\left(2 x - 1 \right)} + 2}{\tanh^{2}{\left(- 2 x + 1 \right)}}$$
The second derivative
[src]
/ 2 \
| -1 + tanh (-1 + 2*x)| / 2 \
8*|1 - --------------------|*\-1 + tanh (-1 + 2*x)/
| 2 |
\ tanh (-1 + 2*x) /
---------------------------------------------------
tanh(-1 + 2*x)
$$\frac{8 \left(1 - \frac{\tanh^{2}{\left(2 x - 1 \right)} - 1}{\tanh^{2}{\left(2 x - 1 \right)}}\right) \left(\tanh^{2}{\left(2 x - 1 \right)} - 1\right)}{\tanh{\left(2 x - 1 \right)}}$$
The third derivative
[src]
/ 3 2\
| / 2 \ / 2 \ |
| 2 3*\-1 + tanh (-1 + 2*x)/ 5*\-1 + tanh (-1 + 2*x)/ |
16*|2 - 2*tanh (-1 + 2*x) - ------------------------- + -------------------------|
| 4 2 |
\ tanh (-1 + 2*x) tanh (-1 + 2*x) /
$$16 \left(- 2 \tanh^{2}{\left(2 x - 1 \right)} + \frac{5 \left(\tanh^{2}{\left(2 x - 1 \right)} - 1\right)^{2}}{\tanh^{2}{\left(2 x - 1 \right)}} + 2 - \frac{3 \left(\tanh^{2}{\left(2 x - 1 \right)} - 1\right)^{3}}{\tanh^{4}{\left(2 x - 1 \right)}}\right)$$