Mister Exam

Other calculators

Derivative of tg*(ln*(tg(sqrt(3)*x-1)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /   /  ___      \\\
tan\log\tan\\/ 3 *x - 1///
tan(log(tan(3x1)))\tan{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}
tan(log(tan(sqrt(3)*x - 1)))
Detail solution
  1. Rewrite the function to be differentiated:

    tan(log(tan(3x1)))=sin(log(tan(3x1)))cos(log(tan(3x1)))\tan{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)} = \frac{\sin{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\cos{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}

  2. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(log(tan(3x1)))f{\left(x \right)} = \sin{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)} and g(x)=cos(log(tan(3x1)))g{\left(x \right)} = \cos{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=log(tan(3x1))u = \log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxlog(tan(3x1))\frac{d}{d x} \log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)}:

      1. Let u=tan(3x1)u = \tan{\left(\sqrt{3} x - 1 \right)}.

      2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

      3. Then, apply the chain rule. Multiply by ddxtan(3x1)\frac{d}{d x} \tan{\left(\sqrt{3} x - 1 \right)}:

        1. Let u=3x1u = \sqrt{3} x - 1.

        2. ddutan(u)=1cos2(u)\frac{d}{d u} \tan{\left(u \right)} = \frac{1}{\cos^{2}{\left(u \right)}}

        3. Then, apply the chain rule. Multiply by ddx(3x1)\frac{d}{d x} \left(\sqrt{3} x - 1\right):

          1. Differentiate 3x1\sqrt{3} x - 1 term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 3\sqrt{3}

            2. The derivative of the constant 1-1 is zero.

            The result is: 3\sqrt{3}

          The result of the chain rule is:

          3cos2(3x1)\frac{\sqrt{3}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)}}

        The result of the chain rule is:

        3sin2(3x1)+3cos2(3x1)cos2(3x1)tan(3x1)\frac{\sqrt{3} \sin^{2}{\left(\sqrt{3} x - 1 \right)} + \sqrt{3} \cos^{2}{\left(\sqrt{3} x - 1 \right)}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)} \tan{\left(\sqrt{3} x - 1 \right)}}

      The result of the chain rule is:

      (3sin2(3x1)+3cos2(3x1))cos(log(tan(3x1)))cos2(3x1)tan(3x1)\frac{\left(\sqrt{3} \sin^{2}{\left(\sqrt{3} x - 1 \right)} + \sqrt{3} \cos^{2}{\left(\sqrt{3} x - 1 \right)}\right) \cos{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)} \tan{\left(\sqrt{3} x - 1 \right)}}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=log(tan(3x1))u = \log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)}.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxlog(tan(3x1))\frac{d}{d x} \log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)}:

      1. Let u=tan(3x1)u = \tan{\left(\sqrt{3} x - 1 \right)}.

      2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

      3. Then, apply the chain rule. Multiply by ddxtan(3x1)\frac{d}{d x} \tan{\left(\sqrt{3} x - 1 \right)}:

        1. Let u=3x1u = \sqrt{3} x - 1.

        2. ddutan(u)=1cos2(u)\frac{d}{d u} \tan{\left(u \right)} = \frac{1}{\cos^{2}{\left(u \right)}}

        3. Then, apply the chain rule. Multiply by ddx(3x1)\frac{d}{d x} \left(\sqrt{3} x - 1\right):

          1. Differentiate 3x1\sqrt{3} x - 1 term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 3\sqrt{3}

            2. The derivative of the constant 1-1 is zero.

            The result is: 3\sqrt{3}

          The result of the chain rule is:

          3cos2(3x1)\frac{\sqrt{3}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)}}

        The result of the chain rule is:

        3sin2(3x1)+3cos2(3x1)cos2(3x1)tan(3x1)\frac{\sqrt{3} \sin^{2}{\left(\sqrt{3} x - 1 \right)} + \sqrt{3} \cos^{2}{\left(\sqrt{3} x - 1 \right)}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)} \tan{\left(\sqrt{3} x - 1 \right)}}

      The result of the chain rule is:

      (3sin2(3x1)+3cos2(3x1))sin(log(tan(3x1)))cos2(3x1)tan(3x1)- \frac{\left(\sqrt{3} \sin^{2}{\left(\sqrt{3} x - 1 \right)} + \sqrt{3} \cos^{2}{\left(\sqrt{3} x - 1 \right)}\right) \sin{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)} \tan{\left(\sqrt{3} x - 1 \right)}}

    Now plug in to the quotient rule:

    (3sin2(3x1)+3cos2(3x1))sin2(log(tan(3x1)))cos2(3x1)tan(3x1)+(3sin2(3x1)+3cos2(3x1))cos2(log(tan(3x1)))cos2(3x1)tan(3x1)cos2(log(tan(3x1)))\frac{\frac{\left(\sqrt{3} \sin^{2}{\left(\sqrt{3} x - 1 \right)} + \sqrt{3} \cos^{2}{\left(\sqrt{3} x - 1 \right)}\right) \sin^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)} \tan{\left(\sqrt{3} x - 1 \right)}} + \frac{\left(\sqrt{3} \sin^{2}{\left(\sqrt{3} x - 1 \right)} + \sqrt{3} \cos^{2}{\left(\sqrt{3} x - 1 \right)}\right) \cos^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)} \tan{\left(\sqrt{3} x - 1 \right)}}}{\cos^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}

  3. Now simplify:

    3cos2(3x1)cos2(log(tan(3x1)))tan(3x1)\frac{\sqrt{3}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)} \cos^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)} \tan{\left(\sqrt{3} x - 1 \right)}}


The answer is:

3cos2(3x1)cos2(log(tan(3x1)))tan(3x1)\frac{\sqrt{3}}{\cos^{2}{\left(\sqrt{3} x - 1 \right)} \cos^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)} \tan{\left(\sqrt{3} x - 1 \right)}}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
  ___ /       2/  ___      \\ /       2/   /   /  ___      \\\\
\/ 3 *\1 + tan \\/ 3 *x - 1//*\1 + tan \log\tan\\/ 3 *x - 1////
---------------------------------------------------------------
                           /  ___      \                       
                        tan\\/ 3 *x - 1/                       
3(tan2(3x1)+1)(tan2(log(tan(3x1)))+1)tan(3x1)\frac{\sqrt{3} \left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right) \left(\tan^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)} + 1\right)}{\tan{\left(\sqrt{3} x - 1 \right)}}
The second derivative [src]
                                                              /           2/         ___\     /       2/         ___\\    /   /   /         ___\\\\
  /       2/         ___\\ /       2/   /   /         ___\\\\ |    1 + tan \-1 + x*\/ 3 /   2*\1 + tan \-1 + x*\/ 3 //*tan\log\tan\-1 + x*\/ 3 ///|
3*\1 + tan \-1 + x*\/ 3 //*\1 + tan \log\tan\-1 + x*\/ 3 ////*|2 - ---------------------- + ------------------------------------------------------|
                                                              |         2/         ___\                          2/         ___\                  |
                                                              \      tan \-1 + x*\/ 3 /                       tan \-1 + x*\/ 3 /                  /
3(tan2(3x1)+1)(tan2(log(tan(3x1)))+1)(2(tan2(3x1)+1)tan(log(tan(3x1)))tan2(3x1)tan2(3x1)+1tan2(3x1)+2)3 \left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right) \left(\tan^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)} + 1\right) \left(\frac{2 \left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right) \tan{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\tan^{2}{\left(\sqrt{3} x - 1 \right)}} - \frac{\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1}{\tan^{2}{\left(\sqrt{3} x - 1 \right)}} + 2\right)
The third derivative [src]
                                                                    /                                              2                                                        2                                                                2                                                         2                                                                                      \
                                                                    |                      /       2/         ___\\      /       2/         ___\\   /       2/         ___\\  /       2/   /   /         ___\\\\     /       2/         ___\\     /   /   /         ___\\\     /       2/         ___\\     2/   /   /         ___\\\     /       2/         ___\\    /   /   /         ___\\\|
    ___ /       2/         ___\\ /       2/   /   /         ___\\\\ |     /         ___\   \1 + tan \-1 + x*\/ 3 //    2*\1 + tan \-1 + x*\/ 3 //   \1 + tan \-1 + x*\/ 3 // *\1 + tan \log\tan\-1 + x*\/ 3 ////   3*\1 + tan \-1 + x*\/ 3 // *tan\log\tan\-1 + x*\/ 3 ///   2*\1 + tan \-1 + x*\/ 3 // *tan \log\tan\-1 + x*\/ 3 ///   6*\1 + tan \-1 + x*\/ 3 //*tan\log\tan\-1 + x*\/ 3 ///|
6*\/ 3 *\1 + tan \-1 + x*\/ 3 //*\1 + tan \log\tan\-1 + x*\/ 3 ////*|2*tan\-1 + x*\/ 3 / + ------------------------- - -------------------------- + ------------------------------------------------------------ - ------------------------------------------------------- + -------------------------------------------------------- + ------------------------------------------------------|
                                                                    |                             3/         ___\             /         ___\                                3/         ___\                                              3/         ___\                                           3/         ___\                                           /         ___\                   |
                                                                    \                          tan \-1 + x*\/ 3 /          tan\-1 + x*\/ 3 /                             tan \-1 + x*\/ 3 /                                           tan \-1 + x*\/ 3 /                                        tan \-1 + x*\/ 3 /                                        tan\-1 + x*\/ 3 /                   /
63(tan2(3x1)+1)(tan2(log(tan(3x1)))+1)((tan2(3x1)+1)2(tan2(log(tan(3x1)))+1)tan3(3x1)+2(tan2(3x1)+1)2tan2(log(tan(3x1)))tan3(3x1)3(tan2(3x1)+1)2tan(log(tan(3x1)))tan3(3x1)+(tan2(3x1)+1)2tan3(3x1)+6(tan2(3x1)+1)tan(log(tan(3x1)))tan(3x1)2(tan2(3x1)+1)tan(3x1)+2tan(3x1))6 \sqrt{3} \left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right) \left(\tan^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)} + 1\right) \left(\frac{\left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right)^{2} \left(\tan^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)} + 1\right)}{\tan^{3}{\left(\sqrt{3} x - 1 \right)}} + \frac{2 \left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right)^{2} \tan^{2}{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\tan^{3}{\left(\sqrt{3} x - 1 \right)}} - \frac{3 \left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right)^{2} \tan{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\tan^{3}{\left(\sqrt{3} x - 1 \right)}} + \frac{\left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right)^{2}}{\tan^{3}{\left(\sqrt{3} x - 1 \right)}} + \frac{6 \left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right) \tan{\left(\log{\left(\tan{\left(\sqrt{3} x - 1 \right)} \right)} \right)}}{\tan{\left(\sqrt{3} x - 1 \right)}} - \frac{2 \left(\tan^{2}{\left(\sqrt{3} x - 1 \right)} + 1\right)}{\tan{\left(\sqrt{3} x - 1 \right)}} + 2 \tan{\left(\sqrt{3} x - 1 \right)}\right)