Mister Exam

Other calculators


2*sin^5(x)

Derivative of 2*sin^5(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     5   
2*sin (x)
2sin5(x)2 \sin^{5}{\left(x \right)}
d /     5   \
--\2*sin (x)/
dx           
ddx2sin5(x)\frac{d}{d x} 2 \sin^{5}{\left(x \right)}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=sin(x)u = \sin{\left(x \right)}.

    2. Apply the power rule: u5u^{5} goes to 5u45 u^{4}

    3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      5sin4(x)cos(x)5 \sin^{4}{\left(x \right)} \cos{\left(x \right)}

    So, the result is: 10sin4(x)cos(x)10 \sin^{4}{\left(x \right)} \cos{\left(x \right)}


The answer is:

10sin4(x)cos(x)10 \sin^{4}{\left(x \right)} \cos{\left(x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
      4          
10*sin (x)*cos(x)
10sin4(x)cos(x)10 \sin^{4}{\left(x \right)} \cos{\left(x \right)}
The second derivative [src]
       3    /   2           2   \
-10*sin (x)*\sin (x) - 4*cos (x)/
10(sin2(x)4cos2(x))sin3(x)- 10 \left(\sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \sin^{3}{\left(x \right)}
The third derivative [src]
       2    /        2            2   \       
-10*sin (x)*\- 12*cos (x) + 13*sin (x)/*cos(x)
10(13sin2(x)12cos2(x))sin2(x)cos(x)- 10 \cdot \left(13 \sin^{2}{\left(x \right)} - 12 \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)}
The graph
Derivative of 2*sin^5(x)