Mister Exam

Derivative of xtan4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*tan(4*x)
xtan(4x)x \tan{\left(4 x \right)}
d             
--(x*tan(4*x))
dx            
ddxxtan(4x)\frac{d}{d x} x \tan{\left(4 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=tan(4x)g{\left(x \right)} = \tan{\left(4 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=4xu = 4 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result of the chain rule is:

        4cos(4x)4 \cos{\left(4 x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=4xu = 4 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result of the chain rule is:

        4sin(4x)- 4 \sin{\left(4 x \right)}

      Now plug in to the quotient rule:

      4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

    The result is: x(4sin2(4x)+4cos2(4x))cos2(4x)+tan(4x)\frac{x \left(4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}\right)}{\cos^{2}{\left(4 x \right)}} + \tan{\left(4 x \right)}

  2. Now simplify:

    4xcos2(4x)+tan(4x)\frac{4 x}{\cos^{2}{\left(4 x \right)}} + \tan{\left(4 x \right)}


The answer is:

4xcos2(4x)+tan(4x)\frac{4 x}{\cos^{2}{\left(4 x \right)}} + \tan{\left(4 x \right)}

The graph
02468-8-6-4-2-1010-20000002000000
The first derivative [src]
  /         2     \           
x*\4 + 4*tan (4*x)/ + tan(4*x)
x(4tan2(4x)+4)+tan(4x)x \left(4 \tan^{2}{\left(4 x \right)} + 4\right) + \tan{\left(4 x \right)}
The second derivative [src]
  /       2            /       2     \         \
8*\1 + tan (4*x) + 4*x*\1 + tan (4*x)/*tan(4*x)/
8(4x(tan2(4x)+1)tan(4x)+tan2(4x)+1)8 \cdot \left(4 x \left(\tan^{2}{\left(4 x \right)} + 1\right) \tan{\left(4 x \right)} + \tan^{2}{\left(4 x \right)} + 1\right)
The third derivative [src]
   /       2     \ /                 /         2     \\
32*\1 + tan (4*x)/*\3*tan(4*x) + 4*x*\1 + 3*tan (4*x)//
32(4x(3tan2(4x)+1)+3tan(4x))(tan2(4x)+1)32 \cdot \left(4 x \left(3 \tan^{2}{\left(4 x \right)} + 1\right) + 3 \tan{\left(4 x \right)}\right) \left(\tan^{2}{\left(4 x \right)} + 1\right)
The graph
Derivative of xtan4x