Mister Exam

Other calculators


y=sin*1/x+1/sinx

Derivative of y=sin*1/x+1/sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(1)     1   
------ + ------
  x      sin(x)
$$\frac{1}{\sin{\left(x \right)}} + \frac{\sin{\left(1 \right)}}{x}$$
sin(1)/x + 1/sin(x)
Detail solution
  1. Differentiate term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
  sin(1)    cos(x)
- ------ - -------
     2        2   
    x      sin (x)
$$- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{\sin{\left(1 \right)}}{x^{2}}$$
The second derivative [src]
                         2   
  1      2*sin(1)   2*cos (x)
------ + -------- + ---------
sin(x)       3          3    
            x        sin (x) 
$$\frac{1}{\sin{\left(x \right)}} + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{3}{\left(x \right)}} + \frac{2 \sin{\left(1 \right)}}{x^{3}}$$
The third derivative [src]
 /                           3   \
 |5*cos(x)   6*sin(1)   6*cos (x)|
-|-------- + -------- + ---------|
 |   2           4          4    |
 \sin (x)       x        sin (x) /
$$- (\frac{5 \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{6 \cos^{3}{\left(x \right)}}{\sin^{4}{\left(x \right)}} + \frac{6 \sin{\left(1 \right)}}{x^{4}})$$
The graph
Derivative of y=sin*1/x+1/sinx