Mister Exam

Other calculators


y(x)=1/x(x+2)

Derivative of y(x)=1/x(x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x + 2
-----
  x  
x+2x\frac{x + 2}{x}
(x + 2)/x
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x+2f{\left(x \right)} = x + 2 and g(x)=xg{\left(x \right)} = x.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x+2x + 2 term by term:

      1. The derivative of the constant 22 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    Now plug in to the quotient rule:

    2x2- \frac{2}{x^{2}}


The answer is:

2x2- \frac{2}{x^{2}}

The graph
02468-8-6-4-2-1010-250250
The first derivative [src]
1   x + 2
- - -----
x      2 
      x  
1xx+2x2\frac{1}{x} - \frac{x + 2}{x^{2}}
The second derivative [src]
  /     2 + x\
2*|-1 + -----|
  \       x  /
--------------
       2      
      x       
2(1+x+2x)x2\frac{2 \left(-1 + \frac{x + 2}{x}\right)}{x^{2}}
The third derivative [src]
  /    2 + x\
6*|1 - -----|
  \      x  /
-------------
       3     
      x      
6(1x+2x)x3\frac{6 \left(1 - \frac{x + 2}{x}\right)}{x^{3}}
The graph
Derivative of y(x)=1/x(x+2)