Mister Exam

Derivative of 1/sqrt(1+x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
  _______
\/ 1 + x 
1x+1\frac{1}{\sqrt{x + 1}}
1/(sqrt(1 + x))
Detail solution
  1. Let u=x+1u = \sqrt{x + 1}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddxx+1\frac{d}{d x} \sqrt{x + 1}:

    1. Let u=x+1u = x + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

      1. Differentiate x+1x + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result of the chain rule is:

      12x+1\frac{1}{2 \sqrt{x + 1}}

    The result of the chain rule is:

    12(x+1)32- \frac{1}{2 \left(x + 1\right)^{\frac{3}{2}}}


The answer is:

12(x+1)32- \frac{1}{2 \left(x + 1\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
        -1         
-------------------
            _______
2*(1 + x)*\/ 1 + x 
12x+1(x+1)- \frac{1}{2 \sqrt{x + 1} \left(x + 1\right)}
The second derivative [src]
     3      
------------
         5/2
4*(1 + x)   
34(x+1)52\frac{3}{4 \left(x + 1\right)^{\frac{5}{2}}}
The third derivative [src]
    -15     
------------
         7/2
8*(1 + x)   
158(x+1)72- \frac{15}{8 \left(x + 1\right)^{\frac{7}{2}}}
The graph
Derivative of 1/sqrt(1+x)