Mister Exam

Other calculators:


1/sqrt(1+x)

Limit of the function 1/sqrt(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1    
 lim ---------
x->oo  _______
     \/ 1 + x 
$$\lim_{x \to \infty} \frac{1}{\sqrt{x + 1}}$$
Limit(1/(sqrt(1 + x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{\sqrt{x + 1}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{\sqrt{x + 1}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{\sqrt{x + 1}} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{\sqrt{x + 1}} = \frac{\sqrt{2}}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{\sqrt{x + 1}} = \frac{\sqrt{2}}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{\sqrt{x + 1}} = 0$$
More at x→-oo
The graph
Limit of the function 1/sqrt(1+x)