Mister Exam

Other calculators

Derivative of 1/sqrt(1+(x-1)^4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1        
-----------------
   ______________
  /            4 
\/  1 + (x - 1)  
1(x1)4+1\frac{1}{\sqrt{\left(x - 1\right)^{4} + 1}}
1/(sqrt(1 + (x - 1)^4))
Detail solution
  1. Let u=(x1)4+1u = \sqrt{\left(x - 1\right)^{4} + 1}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddx(x1)4+1\frac{d}{d x} \sqrt{\left(x - 1\right)^{4} + 1}:

    1. Let u=(x1)4+1u = \left(x - 1\right)^{4} + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx((x1)4+1)\frac{d}{d x} \left(\left(x - 1\right)^{4} + 1\right):

      1. Differentiate (x1)4+1\left(x - 1\right)^{4} + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. Let u=x1u = x - 1.

        3. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

        4. Then, apply the chain rule. Multiply by ddx(x1)\frac{d}{d x} \left(x - 1\right):

          1. Differentiate x1x - 1 term by term:

            1. Apply the power rule: xx goes to 11

            2. The derivative of the constant 1-1 is zero.

            The result is: 11

          The result of the chain rule is:

          4(x1)34 \left(x - 1\right)^{3}

        The result is: 4(x1)34 \left(x - 1\right)^{3}

      The result of the chain rule is:

      2(x1)3(x1)4+1\frac{2 \left(x - 1\right)^{3}}{\sqrt{\left(x - 1\right)^{4} + 1}}

    The result of the chain rule is:

    2(x1)3((x1)4+1)32- \frac{2 \left(x - 1\right)^{3}}{\left(\left(x - 1\right)^{4} + 1\right)^{\frac{3}{2}}}

  4. Now simplify:

    2(x1)3((x1)4+1)32- \frac{2 \left(x - 1\right)^{3}}{\left(\left(x - 1\right)^{4} + 1\right)^{\frac{3}{2}}}


The answer is:

2(x1)3((x1)4+1)32- \frac{2 \left(x - 1\right)^{3}}{\left(\left(x - 1\right)^{4} + 1\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
                    3           
          -2*(x - 1)            
--------------------------------
                  ______________
/           4\   /            4 
\1 + (x - 1) /*\/  1 + (x - 1)  
2(x1)3(x1)4+1((x1)4+1)- \frac{2 \left(x - 1\right)^{3}}{\sqrt{\left(x - 1\right)^{4} + 1} \left(\left(x - 1\right)^{4} + 1\right)}
The second derivative [src]
            /                4 \
          2 |      2*(-1 + x)  |
6*(-1 + x) *|-1 + -------------|
            |                 4|
            \     1 + (-1 + x) /
--------------------------------
                      3/2       
       /            4\          
       \1 + (-1 + x) /          
6(x1)2(2(x1)4(x1)4+11)((x1)4+1)32\frac{6 \left(x - 1\right)^{2} \left(\frac{2 \left(x - 1\right)^{4}}{\left(x - 1\right)^{4} + 1} - 1\right)}{\left(\left(x - 1\right)^{4} + 1\right)^{\frac{3}{2}}}
The third derivative [src]
            /                  8                4 \
            |       10*(-1 + x)       9*(-1 + x)  |
12*(-1 + x)*|-1 - ---------------- + -------------|
            |                    2               4|
            |     /            4\    1 + (-1 + x) |
            \     \1 + (-1 + x) /                 /
---------------------------------------------------
                                3/2                
                 /            4\                   
                 \1 + (-1 + x) /                   
12(x1)(10(x1)8((x1)4+1)2+9(x1)4(x1)4+11)((x1)4+1)32\frac{12 \left(x - 1\right) \left(- \frac{10 \left(x - 1\right)^{8}}{\left(\left(x - 1\right)^{4} + 1\right)^{2}} + \frac{9 \left(x - 1\right)^{4}}{\left(x - 1\right)^{4} + 1} - 1\right)}{\left(\left(x - 1\right)^{4} + 1\right)^{\frac{3}{2}}}