Mister Exam

Other calculators

Derivative of 1/sqrt(1+(x-1)^4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1        
-----------------
   ______________
  /            4 
\/  1 + (x - 1)  
$$\frac{1}{\sqrt{\left(x - 1\right)^{4} + 1}}$$
1/(sqrt(1 + (x - 1)^4))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the power rule: goes to

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                    3           
          -2*(x - 1)            
--------------------------------
                  ______________
/           4\   /            4 
\1 + (x - 1) /*\/  1 + (x - 1)  
$$- \frac{2 \left(x - 1\right)^{3}}{\sqrt{\left(x - 1\right)^{4} + 1} \left(\left(x - 1\right)^{4} + 1\right)}$$
The second derivative [src]
            /                4 \
          2 |      2*(-1 + x)  |
6*(-1 + x) *|-1 + -------------|
            |                 4|
            \     1 + (-1 + x) /
--------------------------------
                      3/2       
       /            4\          
       \1 + (-1 + x) /          
$$\frac{6 \left(x - 1\right)^{2} \left(\frac{2 \left(x - 1\right)^{4}}{\left(x - 1\right)^{4} + 1} - 1\right)}{\left(\left(x - 1\right)^{4} + 1\right)^{\frac{3}{2}}}$$
The third derivative [src]
            /                  8                4 \
            |       10*(-1 + x)       9*(-1 + x)  |
12*(-1 + x)*|-1 - ---------------- + -------------|
            |                    2               4|
            |     /            4\    1 + (-1 + x) |
            \     \1 + (-1 + x) /                 /
---------------------------------------------------
                                3/2                
                 /            4\                   
                 \1 + (-1 + x) /                   
$$\frac{12 \left(x - 1\right) \left(- \frac{10 \left(x - 1\right)^{8}}{\left(\left(x - 1\right)^{4} + 1\right)^{2}} + \frac{9 \left(x - 1\right)^{4}}{\left(x - 1\right)^{4} + 1} - 1\right)}{\left(\left(x - 1\right)^{4} + 1\right)^{\frac{3}{2}}}$$