Mister Exam

Derivative of 1/sqrt(1-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
  _______
\/ 1 - x 
11x\frac{1}{\sqrt{1 - x}}
1/(sqrt(1 - x))
Detail solution
  1. Let u=1xu = \sqrt{1 - x}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddx1x\frac{d}{d x} \sqrt{1 - x}:

    1. Let u=1xu = 1 - x.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(1x)\frac{d}{d x} \left(1 - x\right):

      1. Differentiate 1x1 - x term by term:

        1. The derivative of the constant 11 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 1-1

        The result is: 1-1

      The result of the chain rule is:

      121x- \frac{1}{2 \sqrt{1 - x}}

    The result of the chain rule is:

    12(1x)32\frac{1}{2 \left(1 - x\right)^{\frac{3}{2}}}


The answer is:

12(1x)32\frac{1}{2 \left(1 - x\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-1010020
The first derivative [src]
         1         
-------------------
            _______
2*(1 - x)*\/ 1 - x 
121x(1x)\frac{1}{2 \sqrt{1 - x} \left(1 - x\right)}
The second derivative [src]
     3      
------------
         5/2
4*(1 - x)   
34(1x)52\frac{3}{4 \left(1 - x\right)^{\frac{5}{2}}}
The third derivative [src]
     15     
------------
         7/2
8*(1 - x)   
158(1x)72\frac{15}{8 \left(1 - x\right)^{\frac{7}{2}}}
The graph
Derivative of 1/sqrt(1-x)