Mister Exam

Other calculators

Derivative of (-1)/sqrt(1-2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    -1     
-----------
  _________
\/ 1 - 2*x 
112x- \frac{1}{\sqrt{1 - 2 x}}
-1/sqrt(1 - 2*x)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=12xu = \sqrt{1 - 2 x}.

    2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    3. Then, apply the chain rule. Multiply by ddx12x\frac{d}{d x} \sqrt{1 - 2 x}:

      1. Let u=12xu = 1 - 2 x.

      2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

      3. Then, apply the chain rule. Multiply by ddx(12x)\frac{d}{d x} \left(1 - 2 x\right):

        1. Differentiate 12x1 - 2 x term by term:

          1. The derivative of the constant 11 is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 2-2

          The result is: 2-2

        The result of the chain rule is:

        112x- \frac{1}{\sqrt{1 - 2 x}}

      The result of the chain rule is:

      1(12x)32\frac{1}{\left(1 - 2 x\right)^{\frac{3}{2}}}

    So, the result is: 1(12x)32- \frac{1}{\left(1 - 2 x\right)^{\frac{3}{2}}}


The answer is:

1(12x)32- \frac{1}{\left(1 - 2 x\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
    -1      
------------
         3/2
(1 - 2*x)   
1(12x)32- \frac{1}{\left(1 - 2 x\right)^{\frac{3}{2}}}
The second derivative [src]
    -3      
------------
         5/2
(1 - 2*x)   
3(12x)52- \frac{3}{\left(1 - 2 x\right)^{\frac{5}{2}}}
The third derivative [src]
    -15     
------------
         7/2
(1 - 2*x)   
15(12x)72- \frac{15}{\left(1 - 2 x\right)^{\frac{7}{2}}}