Mister Exam

Derivative of 1/2sin2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*x)
--------
   2    
sin(2x)2\frac{\sin{\left(2 x \right)}}{2}
d /sin(2*x)\
--|--------|
dx\   2    /
ddxsin(2x)2\frac{d}{d x} \frac{\sin{\left(2 x \right)}}{2}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=2xu = 2 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2x)2 \cos{\left(2 x \right)}

    So, the result is: cos(2x)\cos{\left(2 x \right)}


The answer is:

cos(2x)\cos{\left(2 x \right)}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
cos(2*x)
cos(2x)\cos{\left(2 x \right)}
The second derivative [src]
-2*sin(2*x)
2sin(2x)- 2 \sin{\left(2 x \right)}
The third derivative [src]
-4*cos(2*x)
4cos(2x)- 4 \cos{\left(2 x \right)}
The graph
Derivative of 1/2sin2x