/ 2\ cos\y /
d / / 2\\ --\cos\y // dy
Let u=y2u = y^{2}u=y2.
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by ddyy2\frac{d}{d y} y^{2}dydy2:
Apply the power rule: y2y^{2}y2 goes to 2y2 y2y
The result of the chain rule is:
The answer is:
/ 2\ -2*y*sin\y /
/ 2 / 2\ / 2\\ -2*\2*y *cos\y / + sin\y //
/ / 2\ 2 / 2\\ 4*y*\- 3*cos\y / + 2*y *sin\y //