Mister Exam

Other calculators

Derivative of cos(y^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2\
cos\y /
cos(y2)\cos{\left(y^{2} \right)}
d /   / 2\\
--\cos\y //
dy         
ddycos(y2)\frac{d}{d y} \cos{\left(y^{2} \right)}
Detail solution
  1. Let u=y2u = y^{2}.

  2. The derivative of cosine is negative sine:

    dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddyy2\frac{d}{d y} y^{2}:

    1. Apply the power rule: y2y^{2} goes to 2y2 y

    The result of the chain rule is:

    2ysin(y2)- 2 y \sin{\left(y^{2} \right)}


The answer is:

2ysin(y2)- 2 y \sin{\left(y^{2} \right)}

The first derivative [src]
        / 2\
-2*y*sin\y /
2ysin(y2)- 2 y \sin{\left(y^{2} \right)}
The second derivative [src]
   /   2    / 2\      / 2\\
-2*\2*y *cos\y / + sin\y //
2(2y2cos(y2)+sin(y2))- 2 \cdot \left(2 y^{2} \cos{\left(y^{2} \right)} + \sin{\left(y^{2} \right)}\right)
The third derivative [src]
    /       / 2\      2    / 2\\
4*y*\- 3*cos\y / + 2*y *sin\y //
4y(2y2sin(y2)3cos(y2))4 y \left(2 y^{2} \sin{\left(y^{2} \right)} - 3 \cos{\left(y^{2} \right)}\right)