Mister Exam

Other calculators

Derivative of cos(y^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2\
cos\y /
$$\cos{\left(y^{2} \right)}$$
d /   / 2\\
--\cos\y //
dy         
$$\frac{d}{d y} \cos{\left(y^{2} \right)}$$
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The first derivative [src]
        / 2\
-2*y*sin\y /
$$- 2 y \sin{\left(y^{2} \right)}$$
The second derivative [src]
   /   2    / 2\      / 2\\
-2*\2*y *cos\y / + sin\y //
$$- 2 \cdot \left(2 y^{2} \cos{\left(y^{2} \right)} + \sin{\left(y^{2} \right)}\right)$$
The third derivative [src]
    /       / 2\      2    / 2\\
4*y*\- 3*cos\y / + 2*y *sin\y //
$$4 y \left(2 y^{2} \sin{\left(y^{2} \right)} - 3 \cos{\left(y^{2} \right)}\right)$$