Detail solution
-
Let .
-
The derivative of cosine is negative sine:
-
Then, apply the chain rule. Multiply by :
-
Apply the power rule: goes to
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- 2 y \sin{\left(y^{2} \right)}$$
The second derivative
[src]
/ 2 / 2\ / 2\\
-2*\2*y *cos\y / + sin\y //
$$- 2 \cdot \left(2 y^{2} \cos{\left(y^{2} \right)} + \sin{\left(y^{2} \right)}\right)$$
The third derivative
[src]
/ / 2\ 2 / 2\\
4*y*\- 3*cos\y / + 2*y *sin\y //
$$4 y \left(2 y^{2} \sin{\left(y^{2} \right)} - 3 \cos{\left(y^{2} \right)}\right)$$