5 cos (x)
d / 5 \ --\cos (x)/ dx
Let u=cos(x)u = \cos{\left(x \right)}u=cos(x).
Apply the power rule: u5u^{5}u5 goes to 5u45 u^{4}5u4
Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}dxdcos(x):
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
4 -5*cos (x)*sin(x)
3 / 2 2 \ 5*cos (x)*\- cos (x) + 4*sin (x)/
2 / 2 2 \ 5*cos (x)*\- 12*sin (x) + 13*cos (x)/*sin(x)