Mister Exam

Other calculators

Derivative of log((x+3)/(x-3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x + 3\
log|-----|
   \x - 3/
$$\log{\left(\frac{x + 3}{x - 3} \right)}$$
log((x + 3)/(x - 3))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /  1      x + 3  \
(x - 3)*|----- - --------|
        |x - 3          2|
        \        (x - 3) /
--------------------------
          x + 3           
$$\frac{\left(x - 3\right) \left(\frac{1}{x - 3} - \frac{x + 3}{\left(x - 3\right)^{2}}\right)}{x + 3}$$
The second derivative [src]
/    3 + x \ /    1        1  \
|1 - ------|*|- ------ - -----|
\    -3 + x/ \  -3 + x   3 + x/
-------------------------------
             3 + x             
$$\frac{\left(1 - \frac{x + 3}{x - 3}\right) \left(- \frac{1}{x + 3} - \frac{1}{x - 3}\right)}{x + 3}$$
The third derivative [src]
  /    3 + x \ /    1          1              1        \
2*|1 - ------|*|--------- + -------- + ----------------|
  \    -3 + x/ |        2          2   (-3 + x)*(3 + x)|
               \(-3 + x)    (3 + x)                    /
--------------------------------------------------------
                         3 + x                          
$$\frac{2 \left(1 - \frac{x + 3}{x - 3}\right) \left(\frac{1}{\left(x + 3\right)^{2}} + \frac{1}{\left(x - 3\right) \left(x + 3\right)} + \frac{1}{\left(x - 3\right)^{2}}\right)}{x + 3}$$