Mister Exam

Other calculators

Derivative of log((x+3)/(x-3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x + 3\
log|-----|
   \x - 3/
log(x+3x3)\log{\left(\frac{x + 3}{x - 3} \right)}
log((x + 3)/(x - 3))
Detail solution
  1. Let u=x+3x3u = \frac{x + 3}{x - 3}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxx+3x3\frac{d}{d x} \frac{x + 3}{x - 3}:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=x+3f{\left(x \right)} = x + 3 and g(x)=x3g{\left(x \right)} = x - 3.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Differentiate x+3x + 3 term by term:

        1. The derivative of the constant 33 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x3x - 3 term by term:

        1. The derivative of the constant 3-3 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      Now plug in to the quotient rule:

      6(x3)2- \frac{6}{\left(x - 3\right)^{2}}

    The result of the chain rule is:

    6(x3)(x3)2(x+3)- \frac{6 \left(x - 3\right)}{\left(x - 3\right)^{2} \left(x + 3\right)}

  4. Now simplify:

    6x29- \frac{6}{x^{2} - 9}


The answer is:

6x29- \frac{6}{x^{2} - 9}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
        /  1      x + 3  \
(x - 3)*|----- - --------|
        |x - 3          2|
        \        (x - 3) /
--------------------------
          x + 3           
(x3)(1x3x+3(x3)2)x+3\frac{\left(x - 3\right) \left(\frac{1}{x - 3} - \frac{x + 3}{\left(x - 3\right)^{2}}\right)}{x + 3}
The second derivative [src]
/    3 + x \ /    1        1  \
|1 - ------|*|- ------ - -----|
\    -3 + x/ \  -3 + x   3 + x/
-------------------------------
             3 + x             
(1x+3x3)(1x+31x3)x+3\frac{\left(1 - \frac{x + 3}{x - 3}\right) \left(- \frac{1}{x + 3} - \frac{1}{x - 3}\right)}{x + 3}
The third derivative [src]
  /    3 + x \ /    1          1              1        \
2*|1 - ------|*|--------- + -------- + ----------------|
  \    -3 + x/ |        2          2   (-3 + x)*(3 + x)|
               \(-3 + x)    (3 + x)                    /
--------------------------------------------------------
                         3 + x                          
2(1x+3x3)(1(x+3)2+1(x3)(x+3)+1(x3)2)x+3\frac{2 \left(1 - \frac{x + 3}{x - 3}\right) \left(\frac{1}{\left(x + 3\right)^{2}} + \frac{1}{\left(x - 3\right) \left(x + 3\right)} + \frac{1}{\left(x - 3\right)^{2}}\right)}{x + 3}