Mister Exam

Derivative of log_7⁡(12x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(12*x + 5)
-------------
    log(7)   
log(12x+5)log(7)\frac{\log{\left(12 x + 5 \right)}}{\log{\left(7 \right)}}
log(12*x + 5)/log(7)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=12x+5u = 12 x + 5.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(12x+5)\frac{d}{d x} \left(12 x + 5\right):

      1. Differentiate 12x+512 x + 5 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 1212

        2. The derivative of the constant 55 is zero.

        The result is: 1212

      The result of the chain rule is:

      1212x+5\frac{12}{12 x + 5}

    So, the result is: 12(12x+5)log(7)\frac{12}{\left(12 x + 5\right) \log{\left(7 \right)}}

  2. Now simplify:

    12(12x+5)log(7)\frac{12}{\left(12 x + 5\right) \log{\left(7 \right)}}


The answer is:

12(12x+5)log(7)\frac{12}{\left(12 x + 5\right) \log{\left(7 \right)}}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
        12       
-----------------
(12*x + 5)*log(7)
12(12x+5)log(7)\frac{12}{\left(12 x + 5\right) \log{\left(7 \right)}}
The second derivative [src]
      -144        
------------------
          2       
(5 + 12*x) *log(7)
144(12x+5)2log(7)- \frac{144}{\left(12 x + 5\right)^{2} \log{\left(7 \right)}}
The third derivative [src]
       3456       
------------------
          3       
(5 + 12*x) *log(7)
3456(12x+5)3log(7)\frac{3456}{\left(12 x + 5\right)^{3} \log{\left(7 \right)}}