Mister Exam

Derivative of y=(√x-1)²-(x²+1)⁴

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           2           4
/  ___    \    / 2    \ 
\\/ x  - 1/  - \x  + 1/ 
(x2+1)4+(x1)2- \left(x^{2} + 1\right)^{4} + \left(\sqrt{x} - 1\right)^{2}
  /           2           4\
d |/  ___    \    / 2    \ |
--\\\/ x  - 1/  - \x  + 1/ /
dx                          
ddx((x2+1)4+(x1)2)\frac{d}{d x} \left(- \left(x^{2} + 1\right)^{4} + \left(\sqrt{x} - 1\right)^{2}\right)
Detail solution
  1. Differentiate (x1)2(x2+1)4\left(\sqrt{x} - 1\right)^{2} - \left(x^{2} + 1\right)^{4} term by term:

    1. Let u=x1u = \sqrt{x} - 1.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x1)\frac{d}{d x} \left(\sqrt{x} - 1\right):

      1. Differentiate x1\sqrt{x} - 1 term by term:

        1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

        2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

        The result is: 12x\frac{1}{2 \sqrt{x}}

      The result of the chain rule is:

      2x22x\frac{2 \sqrt{x} - 2}{2 \sqrt{x}}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=x2+1u = x^{2} + 1.

      2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

      3. Then, apply the chain rule. Multiply by ddx(x2+1)\frac{d}{d x} \left(x^{2} + 1\right):

        1. Differentiate x2+1x^{2} + 1 term by term:

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          2. The derivative of the constant 11 is zero.

          The result is: 2x2 x

        The result of the chain rule is:

        8x(x2+1)38 x \left(x^{2} + 1\right)^{3}

      So, the result is: 8x(x2+1)3- 8 x \left(x^{2} + 1\right)^{3}

    The result is: 8x(x2+1)3+2x22x- 8 x \left(x^{2} + 1\right)^{3} + \frac{2 \sqrt{x} - 2}{2 \sqrt{x}}

  2. Now simplify:

    8x(x2+1)3+11x- 8 x \left(x^{2} + 1\right)^{3} + 1 - \frac{1}{\sqrt{x}}


The answer is:

8x(x2+1)3+11x- 8 x \left(x^{2} + 1\right)^{3} + 1 - \frac{1}{\sqrt{x}}

The graph
02468-8-6-4-2-1010-200000000200000000
The first derivative [src]
  ___                   3
\/ x  - 1       / 2    \ 
--------- - 8*x*\x  + 1/ 
    ___                  
  \/ x                   
8x(x2+1)3+x1x- 8 x \left(x^{2} + 1\right)^{3} + \frac{\sqrt{x} - 1}{\sqrt{x}}
The second derivative [src]
                3                 2          ___
 1      /     2\        2 /     2\    -1 + \/ x 
--- - 8*\1 + x /  - 48*x *\1 + x /  - ----------
2*x                                        3/2  
                                        2*x     
48x2(x2+1)28(x2+1)3+12xx12x32- 48 x^{2} \left(x^{2} + 1\right)^{2} - 8 \left(x^{2} + 1\right)^{3} + \frac{1}{2 x} - \frac{\sqrt{x} - 1}{2 x^{\frac{3}{2}}}
The third derivative [src]
  /                                       2          ___\
  |   1         3 /     2\        /     2\    -1 + \/ x |
3*|- ---- - 64*x *\1 + x / - 48*x*\1 + x /  + ----------|
  |     2                                          5/2  |
  \  4*x                                        4*x     /
3(64x3(x2+1)48x(x2+1)214x2+x14x52)3 \left(- 64 x^{3} \left(x^{2} + 1\right) - 48 x \left(x^{2} + 1\right)^{2} - \frac{1}{4 x^{2}} + \frac{\sqrt{x} - 1}{4 x^{\frac{5}{2}}}\right)
The graph
Derivative of y=(√x-1)²-(x²+1)⁴