Mister Exam

Derivative of (3x²+1)³

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          3
/   2    \ 
\3*x  + 1/ 
(3x2+1)3\left(3 x^{2} + 1\right)^{3}
  /          3\
d |/   2    \ |
--\\3*x  + 1/ /
dx             
ddx(3x2+1)3\frac{d}{d x} \left(3 x^{2} + 1\right)^{3}
Detail solution
  1. Let u=3x2+1u = 3 x^{2} + 1.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddx(3x2+1)\frac{d}{d x} \left(3 x^{2} + 1\right):

    1. Differentiate 3x2+13 x^{2} + 1 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 6x6 x

      2. The derivative of the constant 11 is zero.

      The result is: 6x6 x

    The result of the chain rule is:

    18x(3x2+1)218 x \left(3 x^{2} + 1\right)^{2}

  4. Now simplify:

    18x(3x2+1)218 x \left(3 x^{2} + 1\right)^{2}


The answer is:

18x(3x2+1)218 x \left(3 x^{2} + 1\right)^{2}

The graph
02468-8-6-4-2-1010-5000000050000000
The first derivative [src]
               2
     /   2    \ 
18*x*\3*x  + 1/ 
18x(3x2+1)218 x \left(3 x^{2} + 1\right)^{2}
The second derivative [src]
   /       2\ /        2\
18*\1 + 3*x /*\1 + 15*x /
18(3x2+1)(15x2+1)18 \cdot \left(3 x^{2} + 1\right) \left(15 x^{2} + 1\right)
The third derivative [src]
      /       2\
648*x*\1 + 5*x /
648x(5x2+1)648 x \left(5 x^{2} + 1\right)
The graph
Derivative of (3x²+1)³