Mister Exam

Derivative of log2(sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(x))
-----------
   log(2)  
$$\frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(2 \right)}}$$
d /log(sin(x))\
--|-----------|
dx\   log(2)  /
$$\frac{d}{d x} \frac{\log{\left(\sin{\left(x \right)} \right)}}{\log{\left(2 \right)}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    cos(x)   
-------------
log(2)*sin(x)
$$\frac{\cos{\left(x \right)}}{\log{\left(2 \right)} \sin{\left(x \right)}}$$
The second derivative [src]
 /       2   \ 
 |    cos (x)| 
-|1 + -------| 
 |       2   | 
 \    sin (x)/ 
---------------
     log(2)    
$$- \frac{1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}}{\log{\left(2 \right)}}$$
The third derivative [src]
  /       2   \       
  |    cos (x)|       
2*|1 + -------|*cos(x)
  |       2   |       
  \    sin (x)/       
----------------------
    log(2)*sin(x)     
$$\frac{2 \cdot \left(1 + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\log{\left(2 \right)} \sin{\left(x \right)}}$$
The graph
Derivative of log2(sinx)