3 / / 2 \\ |log\sin (x)/| |------------| \ log(2) /
(log(sin(x)^2)/log(2))^3
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result of the chain rule is:
So, the result is:
The result of the chain rule is:
Now simplify:
The answer is:
3/ 2 \ log \sin (x)/ 6*-------------*cos(x) 3 log (2) ---------------------- / 2 \ log\sin (x)/*sin(x)
/ 2 2 / 2 \\ | / 2 \ 4*cos (x) cos (x)*log\sin (x)/| / 2 \ 6*|- log\sin (x)/ + --------- - --------------------|*log\sin (x)/ | 2 2 | \ sin (x) sin (x) / ------------------------------------------------------------------ 3 log (2)
/ 2 2 2/ 2 \ 2 / 2 \\ | 2/ 2 \ / 2 \ 4*cos (x) cos (x)*log \sin (x)/ 6*cos (x)*log\sin (x)/| 12*|log \sin (x)/ - 6*log\sin (x)/ + --------- + --------------------- - ----------------------|*cos(x) | 2 2 2 | \ sin (x) sin (x) sin (x) / ------------------------------------------------------------------------------------------------------- 3 log (2)*sin(x)