Mister Exam

Other calculators


1/sqrt(1-x²)

Derivative of 1/sqrt(1-x²)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       1     
1*-----------
     ________
    /      2 
  \/  1 - x  
$$1 \cdot \frac{1}{\sqrt{- x^{2} + 1}}$$
d /       1     \
--|1*-----------|
dx|     ________|
  |    /      2 |
  \  \/  1 - x  /
$$\frac{d}{d x} 1 \cdot \frac{1}{\sqrt{- x^{2} + 1}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
         x          
--------------------
            ________
/     2\   /      2 
\1 - x /*\/  1 - x  
$$\frac{x}{\sqrt{- x^{2} + 1} \cdot \left(- x^{2} + 1\right)}$$
The second derivative [src]
 /          2 \ 
 |       3*x  | 
-|-1 + -------| 
 |           2| 
 \     -1 + x / 
----------------
          3/2   
  /     2\      
  \1 - x /      
$$- \frac{\frac{3 x^{2}}{x^{2} - 1} - 1}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}$$
The third derivative [src]
     /          2 \
     |       5*x  |
-3*x*|-3 + -------|
     |           2|
     \     -1 + x /
-------------------
            5/2    
    /     2\       
    \1 - x /       
$$- \frac{3 x \left(\frac{5 x^{2}}{x^{2} - 1} - 3\right)}{\left(- x^{2} + 1\right)^{\frac{5}{2}}}$$
The graph
Derivative of 1/sqrt(1-x²)