4*x log (2*sin(x))
log(2*sin(x))^(4*x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
4*x / 4*x*cos(x) \
log (2*sin(x))*|4*log(log(2*sin(x))) + --------------------|
\ log(2*sin(x))*sin(x)/
/ 2 2 \
| 2*cos(x) x*cos (x) x*cos (x) |
| x - -------- + --------- + ---------------------|
| 2 sin(x) 2 2 |
4*x | / x*cos(x) \ sin (x) log(2*sin(x))*sin (x)|
4*log (2*sin(x))*|4*|-------------------- + log(log(2*sin(x)))| - ------------------------------------------------|
\ \log(2*sin(x))*sin(x) / log(2*sin(x)) /
/ 2 2 3 3 3 / 2 2 \\
| 3*cos (x) 3*cos (x) 2*x*cos (x) 2*x*cos(x) 2*x*cos (x) 3*x*cos (x) 3*x*cos(x) / x*cos(x) \ | 2*cos(x) x*cos (x) x*cos (x) ||
| -3 - --------- - --------------------- + ----------- + ---------- + ---------------------- + --------------------- + -------------------- 12*|-------------------- + log(log(2*sin(x)))|*|x - -------- + --------- + ---------------------||
| 3 2 2 3 sin(x) 2 3 3 log(2*sin(x))*sin(x) \log(2*sin(x))*sin(x) / | sin(x) 2 2 ||
4*x | / x*cos(x) \ sin (x) log(2*sin(x))*sin (x) sin (x) log (2*sin(x))*sin (x) log(2*sin(x))*sin (x) \ sin (x) log(2*sin(x))*sin (x)/|
4*log (2*sin(x))*|16*|-------------------- + log(log(2*sin(x)))| + ----------------------------------------------------------------------------------------------------------------------------------------- - -------------------------------------------------------------------------------------------------|
\ \log(2*sin(x))*sin(x) / log(2*sin(x)) log(2*sin(x)) /