Mister Exam

Derivative of lncos3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(cos(3*x))
log(cos(3x))\log{\left(\cos{\left(3 x \right)} \right)}
d                
--(log(cos(3*x)))
dx               
ddxlog(cos(3x))\frac{d}{d x} \log{\left(\cos{\left(3 x \right)} \right)}
Detail solution
  1. Let u=cos(3x)u = \cos{\left(3 x \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxcos(3x)\frac{d}{d x} \cos{\left(3 x \right)}:

    1. Let u=3xu = 3 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      3sin(3x)- 3 \sin{\left(3 x \right)}

    The result of the chain rule is:

    3sin(3x)cos(3x)- \frac{3 \sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}

  4. Now simplify:

    3tan(3x)- 3 \tan{\left(3 x \right)}


The answer is:

3tan(3x)- 3 \tan{\left(3 x \right)}

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
-3*sin(3*x)
-----------
  cos(3*x) 
3sin(3x)cos(3x)- \frac{3 \sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}
The second derivative [src]
   /       2     \
   |    sin (3*x)|
-9*|1 + ---------|
   |       2     |
   \    cos (3*x)/
9(sin2(3x)cos2(3x)+1)- 9 \left(\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 1\right)
The third derivative [src]
    /       2     \         
    |    sin (3*x)|         
-54*|1 + ---------|*sin(3*x)
    |       2     |         
    \    cos (3*x)/         
----------------------------
          cos(3*x)          
54(sin2(3x)cos2(3x)+1)sin(3x)cos(3x)- \frac{54 \left(\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 1\right) \sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}
The graph
Derivative of lncos3x