Detail solution
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
Let .
-
The derivative of cosine is negative sine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
The first derivative
[src]
-3*sin(3*x)
-----------
cos(3*x)
$$- \frac{3 \sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}$$
The second derivative
[src]
/ 2 \
| sin (3*x)|
-9*|1 + ---------|
| 2 |
\ cos (3*x)/
$$- 9 \left(\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 1\right)$$
The third derivative
[src]
/ 2 \
| sin (3*x)|
-54*|1 + ---------|*sin(3*x)
| 2 |
\ cos (3*x)/
----------------------------
cos(3*x)
$$- \frac{54 \left(\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 1\right) \sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}$$