Mister Exam

Other calculators

Derivative of lncos(3x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /   2\\
log\cos\3*x //
$$\log{\left(\cos{\left(3 x^{2} \right)} \right)}$$
log(cos(3*x^2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /   2\
-6*x*sin\3*x /
--------------
     /   2\   
  cos\3*x /   
$$- \frac{6 x \sin{\left(3 x^{2} \right)}}{\cos{\left(3 x^{2} \right)}}$$
The second derivative [src]
   /          /   2\      2    2/   2\\
   |   2   sin\3*x /   6*x *sin \3*x /|
-6*|6*x  + --------- + ---------------|
   |          /   2\         2/   2\  |
   \       cos\3*x /      cos \3*x /  /
$$- 6 \left(\frac{6 x^{2} \sin^{2}{\left(3 x^{2} \right)}}{\cos^{2}{\left(3 x^{2} \right)}} + 6 x^{2} + \frac{\sin{\left(3 x^{2} \right)}}{\cos{\left(3 x^{2} \right)}}\right)$$
The third derivative [src]
       /       2/   2\      2    /   2\      2    3/   2\\
       |    sin \3*x /   4*x *sin\3*x /   4*x *sin \3*x /|
-108*x*|1 + ---------- + -------------- + ---------------|
       |       2/   2\        /   2\            3/   2\  |
       \    cos \3*x /     cos\3*x /         cos \3*x /  /
$$- 108 x \left(\frac{4 x^{2} \sin^{3}{\left(3 x^{2} \right)}}{\cos^{3}{\left(3 x^{2} \right)}} + \frac{4 x^{2} \sin{\left(3 x^{2} \right)}}{\cos{\left(3 x^{2} \right)}} + \frac{\sin^{2}{\left(3 x^{2} \right)}}{\cos^{2}{\left(3 x^{2} \right)}} + 1\right)$$