/ / 2\\ log\cos\3*x //
log(cos(3*x^2))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2\ -6*x*sin\3*x / -------------- / 2\ cos\3*x /
/ / 2\ 2 2/ 2\\ | 2 sin\3*x / 6*x *sin \3*x /| -6*|6*x + --------- + ---------------| | / 2\ 2/ 2\ | \ cos\3*x / cos \3*x / /
/ 2/ 2\ 2 / 2\ 2 3/ 2\\ | sin \3*x / 4*x *sin\3*x / 4*x *sin \3*x /| -108*x*|1 + ---------- + -------------- + ---------------| | 2/ 2\ / 2\ 3/ 2\ | \ cos \3*x / cos\3*x / cos \3*x / /