Mister Exam

Other calculators

Derivative of lncos(3x)^(1/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3 _______________
\/ log(cos(3*x)) 
$$\sqrt[3]{\log{\left(\cos{\left(3 x \right)} \right)}}$$
log(cos(3*x))^(1/3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        -sin(3*x)        
-------------------------
            2/3          
cos(3*x)*log   (cos(3*x))
$$- \frac{\sin{\left(3 x \right)}}{\log{\left(\cos{\left(3 x \right)} \right)}^{\frac{2}{3}} \cos{\left(3 x \right)}}$$
The second derivative [src]
 /         2                   2           \ 
 |    3*sin (3*x)         2*sin (3*x)      | 
-|3 + ----------- + -----------------------| 
 |        2            2                   | 
 \     cos (3*x)    cos (3*x)*log(cos(3*x))/ 
---------------------------------------------
                  2/3                        
               log   (cos(3*x))              
$$- \frac{\frac{3 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 3 + \frac{2 \sin^{2}{\left(3 x \right)}}{\log{\left(\cos{\left(3 x \right)} \right)} \cos^{2}{\left(3 x \right)}}}{\log{\left(\cos{\left(3 x \right)} \right)}^{\frac{2}{3}}}$$
The third derivative [src]
   /                         2                   2                          2           \         
   |          9         9*sin (3*x)         5*sin (3*x)                9*sin (3*x)      |         
-2*|9 + ------------- + ----------- + ------------------------ + -----------------------|*sin(3*x)
   |    log(cos(3*x))       2            2         2                2                   |         
   \                     cos (3*x)    cos (3*x)*log (cos(3*x))   cos (3*x)*log(cos(3*x))/         
--------------------------------------------------------------------------------------------------
                                                2/3                                               
                                    cos(3*x)*log   (cos(3*x))                                     
$$- \frac{2 \left(\frac{9 \sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 9 + \frac{9 \sin^{2}{\left(3 x \right)}}{\log{\left(\cos{\left(3 x \right)} \right)} \cos^{2}{\left(3 x \right)}} + \frac{9}{\log{\left(\cos{\left(3 x \right)} \right)}} + \frac{5 \sin^{2}{\left(3 x \right)}}{\log{\left(\cos{\left(3 x \right)} \right)}^{2} \cos^{2}{\left(3 x \right)}}\right) \sin{\left(3 x \right)}}{\log{\left(\cos{\left(3 x \right)} \right)}^{\frac{2}{3}} \cos{\left(3 x \right)}}$$