3 _______________ \/ log(cos(3*x))
log(cos(3*x))^(1/3)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
-sin(3*x) ------------------------- 2/3 cos(3*x)*log (cos(3*x))
/ 2 2 \ | 3*sin (3*x) 2*sin (3*x) | -|3 + ----------- + -----------------------| | 2 2 | \ cos (3*x) cos (3*x)*log(cos(3*x))/ --------------------------------------------- 2/3 log (cos(3*x))
/ 2 2 2 \ | 9 9*sin (3*x) 5*sin (3*x) 9*sin (3*x) | -2*|9 + ------------- + ----------- + ------------------------ + -----------------------|*sin(3*x) | log(cos(3*x)) 2 2 2 2 | \ cos (3*x) cos (3*x)*log (cos(3*x)) cos (3*x)*log(cos(3*x))/ -------------------------------------------------------------------------------------------------- 2/3 cos(3*x)*log (cos(3*x))