tan(2*x) /cot(x)\ |------| \ 2 /
(cot(x)/2)^tan(2*x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
/ / 2 \ \
| | 1 cot (x)| |
tan(2*x) | 2*|- - - -------|*tan(2*x)|
/cot(x)\ |/ 2 \ /cot(x)\ \ 2 2 / |
|------| *|\2 + 2*tan (2*x)/*log|------| + --------------------------|
\ 2 / \ \ 2 / cot(x) /
/ 2 2 \
tan(2*x) |/ / 2 \ \ / 2 \ / 2 \ / 2 \ |
/cot(x)\ || / 2 \ /cot(x)\ \1 + cot (x)/*tan(2*x)| / 2 \ \1 + cot (x)/ *tan(2*x) 4*\1 + cot (x)/*\1 + tan (2*x)/ / 2 \ /cot(x)\ |
|------| *||2*\1 + tan (2*x)/*log|------| - ----------------------| + 2*\1 + cot (x)/*tan(2*x) - ----------------------- - ------------------------------- + 8*\1 + tan (2*x)/*log|------|*tan(2*x)|
\ 2 / |\ \ 2 / cot(x) / 2 cot(x) \ 2 / |
\ cot (x) /
/ 3 / 2 \ 2 3 2 \
tan(2*x) |/ / 2 \ \ / / 2 \ \ | / 2 \ / 2 \ / 2 \| 2 / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ |
/cot(x)\ || / 2 \ /cot(x)\ \1 + cot (x)/*tan(2*x)| | / 2 \ /cot(x)\ \1 + cot (x)/*tan(2*x)| | / 2 \ \1 + cot (x)/ *tan(2*x) / 2 \ /cot(x)\ 4*\1 + cot (x)/*\1 + tan (2*x)/| / 2 \ / 2 \ / 2 \ /cot(x)\ 6*\1 + cot (x)/ *\1 + tan (2*x)/ / 2 \ 2*\1 + cot (x)/ *tan(2*x) 4*\1 + cot (x)/ *tan(2*x) 2 / 2 \ /cot(x)\ 24*\1 + cot (x)/*\1 + tan (2*x)/*tan(2*x)|
|------| *||2*\1 + tan (2*x)/*log|------| - ----------------------| - 3*|2*\1 + tan (2*x)/*log|------| - ----------------------|*|- 2*\1 + cot (x)/*tan(2*x) + ----------------------- - 8*\1 + tan (2*x)/*log|------|*tan(2*x) + -------------------------------| + 12*\1 + cot (x)/*\1 + tan (2*x)/ + 16*\1 + tan (2*x)/ *log|------| - -------------------------------- - 4*\1 + cot (x)/*cot(x)*tan(2*x) - ------------------------- + ------------------------- + 32*tan (2*x)*\1 + tan (2*x)/*log|------| - -----------------------------------------|
\ 2 / |\ \ 2 / cot(x) / \ \ 2 / cot(x) / | 2 \ 2 / cot(x) | \ 2 / 2 3 cot(x) \ 2 / cot(x) |
\ \ cot (x) / cot (x) cot (x) /