cos(x)*sin(x)
Apply the product rule:
f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)}f(x)=cos(x); to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
The derivative of cosine is negative sine:
g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}g(x)=sin(x); to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
The derivative of sine is cosine:
The result is: −sin2(x)+cos2(x)- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}−sin2(x)+cos2(x)
Now simplify:
The answer is:
2 2 cos (x) - sin (x)
-4*cos(x)*sin(x)
/ 2 2 \ 4*\sin (x) - cos (x)/