sin(x) cos (x)
cos(x)^sin(x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
/ 2 \
sin(x) | sin (x)|
cos (x)*|cos(x)*log(cos(x)) - -------|
\ cos(x)/
/ 2 \
|/ 2 \ / 2 \ |
sin(x) || sin (x)| | sin (x) | |
cos (x)*||cos(x)*log(cos(x)) - -------| - |3 + ------- + log(cos(x))|*sin(x)|
|\ cos(x)/ | 2 | |
\ \ cos (x) / /
/ 3 \
|/ 2 \ 2 4 / 2 \ / 2 \ |
sin(x) || sin (x)| 2*sin (x) 2*sin (x) | sin (x)| | sin (x) | |
cos (x)*||cos(x)*log(cos(x)) - -------| - 3*cos(x) - cos(x)*log(cos(x)) - --------- - --------- - 3*|cos(x)*log(cos(x)) - -------|*|3 + ------- + log(cos(x))|*sin(x)|
|\ cos(x)/ cos(x) 3 \ cos(x)/ | 2 | |
\ cos (x) \ cos (x) / /