Apply the product rule:
; to find :
Apply the product rule:
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
; to find :
Apply the power rule: goes to
The result is:
; to find :
The derivative of sine is cosine:
The result is:
Now simplify:
The answer is:
/ x*sin(x) \ |- -------- + log(cos(x))|*sin(x) + x*cos(x)*log(cos(x)) \ cos(x) /
// / 2 \ \ \ || | sin (x)| 2*sin(x)| / x*sin(x)\ | -||x*|1 + -------| + --------|*sin(x) + 2*|-log(cos(x)) + --------|*cos(x) + x*log(cos(x))*sin(x)| || | 2 | cos(x) | \ cos(x) / | \\ \ cos (x)/ / /
/ / 2 \ \ / 2 \ | | sin (x)| 2*sin(x)| / x*sin(x)\ | sin (x)| / 2*x*sin(x)\ - 3*|x*|1 + -------| + --------|*cos(x) + 3*|-log(cos(x)) + --------|*sin(x) - x*cos(x)*log(cos(x)) - |1 + -------|*|3 + ----------|*sin(x) | | 2 | cos(x) | \ cos(x) / | 2 | \ cos(x) / \ \ cos (x)/ / \ cos (x)/