Detail solution
-
Apply the product rule:
; to find :
-
Apply the product rule:
; to find :
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
; to find :
-
Apply the power rule: goes to
The result is:
; to find :
-
The derivative of sine is cosine:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/ x*sin(x) \
|- -------- + log(cos(x))|*sin(x) + x*cos(x)*log(cos(x))
\ cos(x) /
$$x \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} + \left(- \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} + \log{\left(\cos{\left(x \right)} \right)}\right) \sin{\left(x \right)}$$
The second derivative
[src]
// / 2 \ \ \
|| | sin (x)| 2*sin(x)| / x*sin(x)\ |
-||x*|1 + -------| + --------|*sin(x) + 2*|-log(cos(x)) + --------|*cos(x) + x*log(cos(x))*sin(x)|
|| | 2 | cos(x) | \ cos(x) / |
\\ \ cos (x)/ / /
$$- (x \log{\left(\cos{\left(x \right)} \right)} \sin{\left(x \right)} + \left(x \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{2 \sin{\left(x \right)}}{\cos{\left(x \right)}}\right) \sin{\left(x \right)} + 2 \left(\frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} - \log{\left(\cos{\left(x \right)} \right)}\right) \cos{\left(x \right)})$$
The third derivative
[src]
/ / 2 \ \ / 2 \
| | sin (x)| 2*sin(x)| / x*sin(x)\ | sin (x)| / 2*x*sin(x)\
- 3*|x*|1 + -------| + --------|*cos(x) + 3*|-log(cos(x)) + --------|*sin(x) - x*cos(x)*log(cos(x)) - |1 + -------|*|3 + ----------|*sin(x)
| | 2 | cos(x) | \ cos(x) / | 2 | \ cos(x) /
\ \ cos (x)/ / \ cos (x)/
$$- x \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} - 3 \left(x \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{2 \sin{\left(x \right)}}{\cos{\left(x \right)}}\right) \cos{\left(x \right)} - \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) \left(\frac{2 x \sin{\left(x \right)}}{\cos{\left(x \right)}} + 3\right) \sin{\left(x \right)} + 3 \left(\frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} - \log{\left(\cos{\left(x \right)} \right)}\right) \sin{\left(x \right)}$$