Mister Exam

Derivative of logcosxsinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(cos(x))*x*sin(x)
$$x \log{\left(\cos{\left(x \right)} \right)} \sin{\left(x \right)}$$
(log(cos(x))*x)*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      ; to find :

      1. Apply the power rule: goes to

      The result is:

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/  x*sin(x)              \                              
|- -------- + log(cos(x))|*sin(x) + x*cos(x)*log(cos(x))
\   cos(x)               /                              
$$x \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} + \left(- \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} + \log{\left(\cos{\left(x \right)} \right)}\right) \sin{\left(x \right)}$$
The second derivative [src]
 //  /       2   \           \                                                                   \
 ||  |    sin (x)|   2*sin(x)|            /               x*sin(x)\                              |
-||x*|1 + -------| + --------|*sin(x) + 2*|-log(cos(x)) + --------|*cos(x) + x*log(cos(x))*sin(x)|
 ||  |       2   |    cos(x) |            \                cos(x) /                              |
 \\  \    cos (x)/           /                                                                   /
$$- (x \log{\left(\cos{\left(x \right)} \right)} \sin{\left(x \right)} + \left(x \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{2 \sin{\left(x \right)}}{\cos{\left(x \right)}}\right) \sin{\left(x \right)} + 2 \left(\frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} - \log{\left(\cos{\left(x \right)} \right)}\right) \cos{\left(x \right)})$$
The third derivative [src]
    /  /       2   \           \                                                                      /       2   \                        
    |  |    sin (x)|   2*sin(x)|            /               x*sin(x)\                                 |    sin (x)| /    2*x*sin(x)\       
- 3*|x*|1 + -------| + --------|*cos(x) + 3*|-log(cos(x)) + --------|*sin(x) - x*cos(x)*log(cos(x)) - |1 + -------|*|3 + ----------|*sin(x)
    |  |       2   |    cos(x) |            \                cos(x) /                                 |       2   | \      cos(x)  /       
    \  \    cos (x)/           /                                                                      \    cos (x)/                        
$$- x \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} - 3 \left(x \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{2 \sin{\left(x \right)}}{\cos{\left(x \right)}}\right) \cos{\left(x \right)} - \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) \left(\frac{2 x \sin{\left(x \right)}}{\cos{\left(x \right)}} + 3\right) \sin{\left(x \right)} + 3 \left(\frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} - \log{\left(\cos{\left(x \right)} \right)}\right) \sin{\left(x \right)}$$