Integral of cos(x)*sin(x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u)du=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(x)
Method #2
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sin2(x)
-
Add the constant of integration:
−2cos2(x)+constant
The answer is:
−2cos2(x)+constant
The answer (Indefinite)
[src]
/ 2
| cos (x)
| cos(x)*sin(x) dx = C - -------
| 2
/
∫sin(x)cos(x)dx=C−2cos2(x)
The graph
2sin2(1)
=
2sin2(1)
Use the examples entering the upper and lower limits of integration.