Mister Exam

Derivative of cosx/sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(x)
------
sin(x)
$$\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}$$
cos(x)/sin(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of cosine is negative sine:

    To find :

    1. The derivative of sine is cosine:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        2   
     cos (x)
-1 - -------
        2   
     sin (x)
$$-1 - \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The second derivative [src]
/         2   \       
|    2*cos (x)|       
|2 + ---------|*cos(x)
|        2    |       
\     sin (x) /       
----------------------
        sin(x)        
$$\frac{\left(2 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The third derivative [src]
 /                        /         2   \\
 |                   2    |    6*cos (x)||
 |                cos (x)*|5 + ---------||
 |         2              |        2    ||
 |    3*cos (x)           \     sin (x) /|
-|2 + --------- + -----------------------|
 |        2                  2           |
 \     sin (x)            sin (x)        /
$$- (\frac{\left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + 2 + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}})$$
The graph
Derivative of cosx/sinx