x - cos(x) ---------- sin(x)
(x - cos(x))/sin(x)
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
To find :
The derivative of sine is cosine:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 + sin(x) (x - cos(x))*cos(x) ---------- - ------------------- sin(x) 2 sin (x)
/ 2 \ | 2*cos (x)| 2*(1 + sin(x))*cos(x) |1 + ---------|*(x - cos(x)) - --------------------- + cos(x) | 2 | sin(x) \ sin (x) / ------------------------------------------------------------- sin(x)
/ 2 \ / 2 \ | 2*cos (x)| | 6*cos (x)| 3*|1 + ---------|*(1 + sin(x)) |5 + ---------|*(x - cos(x))*cos(x) 2 | 2 | | 2 | 3*cos (x) \ sin (x) / \ sin (x) / -1 - --------- + ------------------------------ - ----------------------------------- 2 sin(x) 2 sin (x) sin (x)