Mister Exam

Derivative of y=(x-cosx)/sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x - cos(x)
----------
  sin(x)  
$$\frac{x - \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
(x - cos(x))/sin(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    To find :

    1. The derivative of sine is cosine:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
1 + sin(x)   (x - cos(x))*cos(x)
---------- - -------------------
  sin(x)              2         
                   sin (x)      
$$- \frac{\left(x - \cos{\left(x \right)}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{\sin{\left(x \right)} + 1}{\sin{\left(x \right)}}$$
The second derivative [src]
/         2   \                                              
|    2*cos (x)|                2*(1 + sin(x))*cos(x)         
|1 + ---------|*(x - cos(x)) - --------------------- + cos(x)
|        2    |                        sin(x)                
\     sin (x) /                                              
-------------------------------------------------------------
                            sin(x)                           
$$\frac{\left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \left(x - \cos{\left(x \right)}\right) - \frac{2 \left(\sin{\left(x \right)} + 1\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} + \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The third derivative [src]
                   /         2   \                /         2   \                    
                   |    2*cos (x)|                |    6*cos (x)|                    
                 3*|1 + ---------|*(1 + sin(x))   |5 + ---------|*(x - cos(x))*cos(x)
          2        |        2    |                |        2    |                    
     3*cos (x)     \     sin (x) /                \     sin (x) /                    
-1 - --------- + ------------------------------ - -----------------------------------
         2                   sin(x)                                2                 
      sin (x)                                                   sin (x)              
$$\frac{3 \left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \left(\sin{\left(x \right)} + 1\right)}{\sin{\left(x \right)}} - \frac{\left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \left(x - \cos{\left(x \right)}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} - 1 - \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The graph
Derivative of y=(x-cosx)/sinx