Mister Exam

Derivative of 10cos(x)/sin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
10*cos(x)
---------
  sin(x) 
$$\frac{10 \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
(10*cos(x))/sin(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of cosine is negative sine:

      So, the result is:

    To find :

    1. The derivative of sine is cosine:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
            2   
      10*cos (x)
-10 - ----------
          2     
       sin (x)  
$$-10 - \frac{10 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$
The second derivative [src]
   /         2   \       
   |    2*cos (x)|       
10*|2 + ---------|*cos(x)
   |        2    |       
   \     sin (x) /       
-------------------------
          sin(x)         
$$\frac{10 \left(2 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The third derivative [src]
    /                        /         2   \\
    |                   2    |    6*cos (x)||
    |                cos (x)*|5 + ---------||
    |         2              |        2    ||
    |    3*cos (x)           \     sin (x) /|
-10*|2 + --------- + -----------------------|
    |        2                  2           |
    \     sin (x)            sin (x)        /
$$- 10 \left(\frac{\left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + 2 + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)$$