Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- 7 \sin{\left(x \right)} \cos^{6}{\left(x \right)}$$
The second derivative
[src]
5 / 2 2 \
7*cos (x)*\- cos (x) + 6*sin (x)/
$$7 \cdot \left(6 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{5}{\left(x \right)}$$
The third derivative
[src]
4 / 2 2 \
7*cos (x)*\- 30*sin (x) + 19*cos (x)/*sin(x)
$$7 \left(- 30 \sin^{2}{\left(x \right)} + 19 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{4}{\left(x \right)}$$