Integral of cos^7(x) dx
The solution
Detail solution
-
Rewrite the integrand:
cos7(x)=(1−sin2(x))3cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(1−sin2(x))3cos(x)=−sin6(x)cos(x)+3sin4(x)cos(x)−3sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin6(x)cos(x))dx=−∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −7sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin4(x)cos(x)dx=3∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 53sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin2(x)cos(x))dx=−3∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −7sin7(x)+53sin5(x)−sin3(x)+sin(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))3cos(x)=−sin6(x)cos(x)+3sin4(x)cos(x)−3sin2(x)cos(x)+cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin6(x)cos(x))dx=−∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: −7sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin4(x)cos(x)dx=3∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: 53sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin2(x)cos(x))dx=−3∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: −sin3(x)
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
The result is: −7sin7(x)+53sin5(x)−sin3(x)+sin(x)
-
Now simplify:
(−7sin6(x)+53sin4(x)+cos2(x))sin(x)
-
Add the constant of integration:
(−7sin6(x)+53sin4(x)+cos2(x))sin(x)+constant
The answer is:
(−7sin6(x)+53sin4(x)+cos2(x))sin(x)+constant
The answer (Indefinite)
[src]
/
| 7 5
| 7 3 sin (x) 3*sin (x)
| cos (x) dx = C - sin (x) - ------- + --------- + sin(x)
| 7 5
/
−7sin7x+53sin5x−sin3x+sinx
The graph
7 5
3 sin (1) 3*sin (1)
- sin (1) - ------- + --------- + sin(1)
7 5
−355sin71−21sin51+35sin31−35sin1
=
7 5
3 sin (1) 3*sin (1)
- sin (1) - ------- + --------- + sin(1)
7 5
−sin3(1)−7sin7(1)+53sin5(1)+sin(1)
Use the examples entering the upper and lower limits of integration.