Mister Exam

Other calculators


cos^7(x)

Integral of cos^7(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     7      
 |  cos (x) dx
 |            
/             
0             
01cos7(x)dx\int\limits_{0}^{1} \cos^{7}{\left(x \right)}\, dx
Integral(cos(x)^7, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    cos7(x)=(1sin2(x))3cos(x)\cos^{7}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)}

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (1sin2(x))3cos(x)=sin6(x)cos(x)+3sin4(x)cos(x)3sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)} = - \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin6(x)cos(x))dx=sin6(x)cos(x)dx\int \left(- \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u6du\int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          Now substitute uu back in:

          sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

        So, the result is: sin7(x)7- \frac{\sin^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3sin4(x)cos(x)dx=3sin4(x)cos(x)dx\int 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 3 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u4du\int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          Now substitute uu back in:

          sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

        So, the result is: 3sin5(x)5\frac{3 \sin^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3sin2(x)cos(x))dx=3sin2(x)cos(x)dx\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 3 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u2du\int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          Now substitute uu back in:

          sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

        So, the result is: sin3(x)- \sin^{3}{\left(x \right)}

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      The result is: sin7(x)7+3sin5(x)5sin3(x)+sin(x)- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{3 \sin^{5}{\left(x \right)}}{5} - \sin^{3}{\left(x \right)} + \sin{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      (1sin2(x))3cos(x)=sin6(x)cos(x)+3sin4(x)cos(x)3sin2(x)cos(x)+cos(x)\left(1 - \sin^{2}{\left(x \right)}\right)^{3} \cos{\left(x \right)} = - \sin^{6}{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)} - 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos{\left(x \right)}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (sin6(x)cos(x))dx=sin6(x)cos(x)dx\int \left(- \sin^{6}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u6du\int u^{6}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

          Now substitute uu back in:

          sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

        So, the result is: sin7(x)7- \frac{\sin^{7}{\left(x \right)}}{7}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3sin4(x)cos(x)dx=3sin4(x)cos(x)dx\int 3 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx = 3 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u4du\int u^{4}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

          Now substitute uu back in:

          sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

        So, the result is: 3sin5(x)5\frac{3 \sin^{5}{\left(x \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3sin2(x)cos(x))dx=3sin2(x)cos(x)dx\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 3 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

        1. Let u=sin(x)u = \sin{\left(x \right)}.

          Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

          u2du\int u^{2}\, du

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          Now substitute uu back in:

          sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

        So, the result is: sin3(x)- \sin^{3}{\left(x \right)}

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      The result is: sin7(x)7+3sin5(x)5sin3(x)+sin(x)- \frac{\sin^{7}{\left(x \right)}}{7} + \frac{3 \sin^{5}{\left(x \right)}}{5} - \sin^{3}{\left(x \right)} + \sin{\left(x \right)}

  3. Now simplify:

    (sin6(x)7+3sin4(x)5+cos2(x))sin(x)\left(- \frac{\sin^{6}{\left(x \right)}}{7} + \frac{3 \sin^{4}{\left(x \right)}}{5} + \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}

  4. Add the constant of integration:

    (sin6(x)7+3sin4(x)5+cos2(x))sin(x)+constant\left(- \frac{\sin^{6}{\left(x \right)}}{7} + \frac{3 \sin^{4}{\left(x \right)}}{5} + \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

(sin6(x)7+3sin4(x)5+cos2(x))sin(x)+constant\left(- \frac{\sin^{6}{\left(x \right)}}{7} + \frac{3 \sin^{4}{\left(x \right)}}{5} + \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                       
 |                               7           5            
 |    7                3      sin (x)   3*sin (x)         
 | cos (x) dx = C - sin (x) - ------- + --------- + sin(x)
 |                               7          5             
/                                                         
sin7x7+3sin5x5sin3x+sinx-{{\sin ^7x}\over{7}}+{{3\,\sin ^5x}\over{5}}-\sin ^3x+\sin x
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
               7           5            
     3      sin (1)   3*sin (1)         
- sin (1) - ------- + --------- + sin(1)
               7          5             
5sin7121sin51+35sin3135sin135-{{5\,\sin ^71-21\,\sin ^51+35\,\sin ^31-35\,\sin 1}\over{35}}
=
=
               7           5            
     3      sin (1)   3*sin (1)         
- sin (1) - ------- + --------- + sin(1)
               7          5             
sin3(1)sin7(1)7+3sin5(1)5+sin(1)- \sin^{3}{\left(1 \right)} - \frac{\sin^{7}{\left(1 \right)}}{7} + \frac{3 \sin^{5}{\left(1 \right)}}{5} + \sin{\left(1 \right)}
Numerical answer [src]
0.456104465133679
0.456104465133679
The graph
Integral of cos^7(x) dx

    Use the examples entering the upper and lower limits of integration.