___________________ / 2 2 \/ cos (x) - sin (x)
/ ___________________\ d | / 2 2 | --\\/ cos (x) - sin (x) / dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
-2*cos(x)*sin(x) ---------------------- ___________________ / 2 2 \/ cos (x) - sin (x)
/ 2 2 \
| 2 2 2*cos (x)*sin (x)|
2*|sin (x) - cos (x) - -----------------|
| 2 2 |
\ cos (x) - sin (x)/
-----------------------------------------
___________________
/ 2 2
\/ cos (x) - sin (x)
/ 2 2 2 2 \
| 3*cos (x) 3*sin (x) 6*cos (x)*sin (x) |
4*|2 - ----------------- + ----------------- - --------------------|*cos(x)*sin(x)
| 2 2 2 2 2|
| cos (x) - sin (x) cos (x) - sin (x) / 2 2 \ |
\ \cos (x) - sin (x)/ /
----------------------------------------------------------------------------------
___________________
/ 2 2
\/ cos (x) - sin (x)