Mister Exam

Other calculators


sqrt(cos^2x-sin^2x)

Derivative of sqrt(cos^2x-sin^2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___________________
  /    2         2    
\/  cos (x) - sin (x) 
$$\sqrt{- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}$$
  /   ___________________\
d |  /    2         2    |
--\\/  cos (x) - sin (x) /
dx                        
$$\frac{d}{d x} \sqrt{- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of sine is cosine:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   -2*cos(x)*sin(x)   
----------------------
   ___________________
  /    2         2    
\/  cos (x) - sin (x) 
$$- \frac{2 \sin{\left(x \right)} \cos{\left(x \right)}}{\sqrt{- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}}$$
The second derivative [src]
  /                         2       2   \
  |   2         2      2*cos (x)*sin (x)|
2*|sin (x) - cos (x) - -----------------|
  |                       2         2   |
  \                    cos (x) - sin (x)/
-----------------------------------------
             ___________________         
            /    2         2             
          \/  cos (x) - sin (x)          
$$\frac{2 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)} - \frac{2 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}\right)}{\sqrt{- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}}$$
The third derivative [src]
  /             2                   2                2       2     \              
  |        3*cos (x)           3*sin (x)        6*cos (x)*sin (x)  |              
4*|2 - ----------------- + ----------------- - --------------------|*cos(x)*sin(x)
  |       2         2         2         2                         2|              
  |    cos (x) - sin (x)   cos (x) - sin (x)   /   2         2   \ |              
  \                                            \cos (x) - sin (x)/ /              
----------------------------------------------------------------------------------
                                 ___________________                              
                                /    2         2                                  
                              \/  cos (x) - sin (x)                               
$$\frac{4 \cdot \left(2 + \frac{3 \sin^{2}{\left(x \right)}}{- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}} - \frac{3 \cos^{2}{\left(x \right)}}{- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}} - \frac{6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)^{2}}\right) \sin{\left(x \right)} \cos{\left(x \right)}}{\sqrt{- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}}$$
The graph
Derivative of sqrt(cos^2x-sin^2x)