___________________ / 2 2 \/ cos (x) - sin (x)
/ ___________________\ d | / 2 2 | --\\/ cos (x) - sin (x) / dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
-2*cos(x)*sin(x) ---------------------- ___________________ / 2 2 \/ cos (x) - sin (x)
/ 2 2 \ | 2 2 2*cos (x)*sin (x)| 2*|sin (x) - cos (x) - -----------------| | 2 2 | \ cos (x) - sin (x)/ ----------------------------------------- ___________________ / 2 2 \/ cos (x) - sin (x)
/ 2 2 2 2 \ | 3*cos (x) 3*sin (x) 6*cos (x)*sin (x) | 4*|2 - ----------------- + ----------------- - --------------------|*cos(x)*sin(x) | 2 2 2 2 2| | cos (x) - sin (x) cos (x) - sin (x) / 2 2 \ | \ \cos (x) - sin (x)/ / ---------------------------------------------------------------------------------- ___________________ / 2 2 \/ cos (x) - sin (x)