Mister Exam

Derivative of y=sqrt(sin4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________
\/ sin(4*x) 
$$\sqrt{\sin{\left(4 x \right)}}$$
d /  __________\
--\\/ sin(4*x) /
dx              
$$\frac{d}{d x} \sqrt{\sin{\left(4 x \right)}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
 2*cos(4*x) 
------------
  __________
\/ sin(4*x) 
$$\frac{2 \cos{\left(4 x \right)}}{\sqrt{\sin{\left(4 x \right)}}}$$
The second derivative [src]
   /                     2      \
   |    __________    cos (4*x) |
-4*|2*\/ sin(4*x)  + -----------|
   |                    3/2     |
   \                 sin   (4*x)/
$$- 4 \cdot \left(2 \sqrt{\sin{\left(4 x \right)}} + \frac{\cos^{2}{\left(4 x \right)}}{\sin^{\frac{3}{2}}{\left(4 x \right)}}\right)$$
The third derivative [src]
  /         2     \         
  |    3*cos (4*x)|         
8*|2 + -----------|*cos(4*x)
  |        2      |         
  \     sin (4*x) /         
----------------------------
          __________        
        \/ sin(4*x)         
$$\frac{8 \cdot \left(2 + \frac{3 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \cos{\left(4 x \right)}}{\sqrt{\sin{\left(4 x \right)}}}$$
The graph
Derivative of y=sqrt(sin4x)