Integral of cos(log(x)) dx
The solution
Detail solution
-
Let u=log(x).
Then let du=xdx and substitute du:
∫eucos(u)du
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand eucos(u):
Let u(u)=cos(u) and let dv(u)=eu.
Then ∫eucos(u)du=eucos(u)−∫(−eusin(u))du.
-
For the integrand −eusin(u):
Let u(u)=−sin(u) and let dv(u)=eu.
Then ∫eucos(u)du=eusin(u)+eucos(u)+∫(−eucos(u))du.
-
Notice that the integrand has repeated itself, so move it to one side:
2∫eucos(u)du=eusin(u)+eucos(u)
Therefore,
∫eucos(u)du=2eusin(u)+2eucos(u)
Now substitute u back in:
2xsin(log(x))+2xcos(log(x))
-
Now simplify:
22xsin(log(x)+4π)
-
Add the constant of integration:
22xsin(log(x)+4π)+constant
The answer is:
22xsin(log(x)+4π)+constant
The answer (Indefinite)
[src]
/
| x*cos(log(x)) x*sin(log(x))
| cos(log(x)) dx = C + ------------- + -------------
| 2 2
/
2x(sinlogx+coslogx)
Use the examples entering the upper and lower limits of integration.