Mister Exam

Integral of cos(log(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  cos(log(x)) dx
 |                
/                 
0                 
01cos(log(x))dx\int\limits_{0}^{1} \cos{\left(\log{\left(x \right)} \right)}\, dx
Integral(cos(log(x)), (x, 0, 1))
Detail solution
  1. Let u=log(x)u = \log{\left(x \right)}.

    Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

    eucos(u)du\int e^{u} \cos{\left(u \right)}\, du

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand eucos(u)e^{u} \cos{\left(u \right)}:

        Let u(u)=cos(u)u{\left(u \right)} = \cos{\left(u \right)} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

        Then eucos(u)du=eucos(u)(eusin(u))du\int e^{u} \cos{\left(u \right)}\, du = e^{u} \cos{\left(u \right)} - \int \left(- e^{u} \sin{\left(u \right)}\right)\, du.

      2. For the integrand eusin(u)- e^{u} \sin{\left(u \right)}:

        Let u(u)=sin(u)u{\left(u \right)} = - \sin{\left(u \right)} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

        Then eucos(u)du=eusin(u)+eucos(u)+(eucos(u))du\int e^{u} \cos{\left(u \right)}\, du = e^{u} \sin{\left(u \right)} + e^{u} \cos{\left(u \right)} + \int \left(- e^{u} \cos{\left(u \right)}\right)\, du.

      3. Notice that the integrand has repeated itself, so move it to one side:

        2eucos(u)du=eusin(u)+eucos(u)2 \int e^{u} \cos{\left(u \right)}\, du = e^{u} \sin{\left(u \right)} + e^{u} \cos{\left(u \right)}

        Therefore,

        eucos(u)du=eusin(u)2+eucos(u)2\int e^{u} \cos{\left(u \right)}\, du = \frac{e^{u} \sin{\left(u \right)}}{2} + \frac{e^{u} \cos{\left(u \right)}}{2}

    Now substitute uu back in:

    xsin(log(x))2+xcos(log(x))2\frac{x \sin{\left(\log{\left(x \right)} \right)}}{2} + \frac{x \cos{\left(\log{\left(x \right)} \right)}}{2}

  2. Now simplify:

    2xsin(log(x)+π4)2\frac{\sqrt{2} x \sin{\left(\log{\left(x \right)} + \frac{\pi}{4} \right)}}{2}

  3. Add the constant of integration:

    2xsin(log(x)+π4)2+constant\frac{\sqrt{2} x \sin{\left(\log{\left(x \right)} + \frac{\pi}{4} \right)}}{2}+ \mathrm{constant}


The answer is:

2xsin(log(x)+π4)2+constant\frac{\sqrt{2} x \sin{\left(\log{\left(x \right)} + \frac{\pi}{4} \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                  
 |                      x*cos(log(x))   x*sin(log(x))
 | cos(log(x)) dx = C + ------------- + -------------
 |                            2               2      
/                                                    
x(sinlogx+coslogx)2{{x\,\left(\sin \log x+\cos \log x\right)}\over{2}}
The answer [src]
1/2
12{{1}\over{2}}
=
=
1/2
12\frac{1}{2}
Numerical answer [src]
0.5
0.5

    Use the examples entering the upper and lower limits of integration.