Mister Exam

Other calculators


0,8*(101,48+5,48)*139*302*10^-6
  • How to use it?

  • Sum of series:
  • n^2/3^n n^2/3^n
  • n^3/2^n n^3/2^n
  • (3/4)^n (3/4)^n
  • 1/((2n-1)*(2n+1)) 1/((2n-1)*(2n+1))
  • Identical expressions

  • zero , eight *(one hundred and one , forty-eight + five , forty-eight)* one hundred and thirty-nine * three hundred and two * ten ^- six
  • 0,8 multiply by (101,48 plus 5,48) multiply by 139 multiply by 302 multiply by 10 to the power of minus 6
  • zero , eight multiply by (one hundred and one , forty minus eight plus five , forty minus eight) multiply by one hundred and thirty minus nine multiply by three hundred and two multiply by ten to the power of minus six
  • 0,8*(101,48+5,48)*139*302*10-6
  • 0,8*101,48+5,48*139*302*10-6
  • 0,8(101,48+5,48)13930210^-6
  • 0,8(101,48+5,48)13930210-6
  • 0,8101,48+5,4813930210-6
  • 0,8101,48+5,4813930210^-6
  • Similar expressions

  • 0,8*(101,48+5,48)*139*302*10^+6
  • 0,8*(101,48-5,48)*139*302*10^-6

Sum of series 0,8*(101,48+5,48)*139*302*10^-6



=

The solution

You have entered [src]
  oo                               
____                               
\   `                              
 \      /2537   137\               
  \   4*|---- + ---|               
   )    \ 25     25/               
  /   --------------*139*302*1.0e-6
 /          5                      
/___,                              
n = 1                              
$$\sum_{n=1}^{\infty} 1.0 \cdot 10^{-6} \cdot 302 \cdot 139 \frac{4 \left(\frac{137}{25} + \frac{2537}{25}\right)}{5}$$
Sum((((4*(2537/25 + 137/25)/5)*139)*302)*1.0e-6, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$1 \cdot 10^{-6} \cdot 302 \cdot 139 \frac{4 \left(\frac{137}{25} + \frac{2537}{25}\right)}{5}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 3.591973504$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
The graph
Sum of series 0,8*(101,48+5,48)*139*302*10^-6

    Examples of finding the sum of a series