Mister Exam

Other calculators

Sum of series x^2/(x^3+1)



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \       2  
  \     x   
   )  ------
  /    3    
 /    x  + 1
/___,       
n = 1       
$$\sum_{n=1}^{\infty} \frac{x^{2}}{x^{3} + 1}$$
Sum(x^2/(x^3 + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{x^{2}}{x^{3} + 1}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{x^{2}}{x^{3} + 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
    2 
oo*x  
------
     3
1 + x 
$$\frac{\infty x^{2}}{x^{3} + 1}$$
oo*x^2/(1 + x^3)

    Examples of finding the sum of a series