Mister Exam

Other calculators

Sum of series (3×x^n)/(4n^2-9)



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \         n  
  \     3*x   
   )  --------
  /      2    
 /    4*n  - 9
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{3 x^{n}}{4 n^{2} - 9}$$
Sum((3*x^n)/(4*n^2 - 9), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{3 x^{n}}{4 n^{2} - 9}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{3}{4 n^{2} - 9}$$
and
$$x_{0} = 0$$
,
$$d = 1$$
,
$$c = 1$$
then
$$R = \lim_{n \to \infty}\left(3 \left|{\frac{\frac{4 \left(n + 1\right)^{2}}{3} - 3}{4 n^{2} - 9}}\right|\right)$$
Let's take the limit
we find
$$R = 1$$
The answer [src]
  //   /               2                          \               \
  ||   |  5   5*x   5*x                           |               |
  ||   |- - - --- + ----   /       3\      /  ___\|               |
  ||   |  6    18    6     \5 - 5*x /*atanh\\/ x /|               |
  ||-x*|---------------- + -----------------------|               |
  ||   |        2                      5/2        |               |
  ||   \       x                    6*x           /               |
  ||------------------------------------------------  for |x| <= 1|
  ||                       5                                      |
  ||                                                              |
3*|<                  oo                                          |
  ||                ____                                          |
  ||                \   `                                         |
  ||                 \         n                                  |
  ||                  \       x                                   |
  ||                   )  ---------                    otherwise  |
  ||                  /           2                               |
  ||                 /    -9 + 4*n                                |
  ||                /___,                                         |
  ||                n = 1                                         |
  \\                                                              /
$$3 \left(\begin{cases} - \frac{x \left(\frac{\frac{5 x^{2}}{6} - \frac{5 x}{18} - \frac{5}{6}}{x^{2}} + \frac{\left(5 - 5 x^{3}\right) \operatorname{atanh}{\left(\sqrt{x} \right)}}{6 x^{\frac{5}{2}}}\right)}{5} & \text{for}\: \left|{x}\right| \leq 1 \\\sum_{n=1}^{\infty} \frac{x^{n}}{4 n^{2} - 9} & \text{otherwise} \end{cases}\right)$$
3*Piecewise((-x*((-5/6 - 5*x/18 + 5*x^2/6)/x^2 + (5 - 5*x^3)*atanh(sqrt(x))/(6*x^(5/2)))/5, |x| <= 1), (Sum(x^n/(-9 + 4*n^2), (n, 1, oo)), True))

    Examples of finding the sum of a series