Given number:
$$\frac{3 x^{n}}{4 n^{2} - 9}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{3}{4 n^{2} - 9}$$
and
$$x_{0} = 0$$
,
$$d = 1$$
,
$$c = 1$$
then
$$R = \lim_{n \to \infty}\left(3 \left|{\frac{\frac{4 \left(n + 1\right)^{2}}{3} - 3}{4 n^{2} - 9}}\right|\right)$$
Let's take the limitwe find
$$R = 1$$