Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • x^n/n^2
  • sin(1/n^2) sin(1/n^2)
  • 6 6
  • nx^(n-1)
  • Limit of the function:
  • x^n/n^2
  • Identical expressions

  • x^n/n^ two
  • x to the power of n divide by n squared
  • x to the power of n divide by n to the power of two
  • xn/n2
  • x^n/n²
  • x to the power of n/n to the power of 2
  • x^n divide by n^2

Sum of series x^n/n^2



=

The solution

You have entered [src]
  oo    
____    
\   `   
 \     n
  \   x 
   )  --
  /    2
 /    n 
/___,   
n = 1   
$$\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$$
Sum(x^n/n^2, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{x^{n}}{n^{2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n^{2}}$$
and
$$x_{0} = 0$$
,
$$d = 1$$
,
$$c = 1$$
then
$$R = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2}}{n^{2}}\right)$$
Let's take the limit
we find
$$R = 1$$
The answer [src]
/polylog(2, x)  for |x| <= 1
|                           
|    oo                     
|  ____                     
|  \   `                    
|   \     n                 
<    \   x                  
|     )  --      otherwise  
|    /    2                 
|   /    n                  
|  /___,                    
|  n = 1                    
\                           
$$\begin{cases} \operatorname{Li}_{2}\left(x\right) & \text{for}\: \left|{x}\right| \leq 1 \\\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} & \text{otherwise} \end{cases}$$
Piecewise((polylog(2, x), |x| <= 1), (Sum(x^n/n^2, (n, 1, oo)), True))

    Examples of finding the sum of a series