Mister Exam

Other calculators

Sum of series nx^(n-1)



=

The solution

You have entered [src]
  oo          
 ___          
 \  `         
  \      n - 1
  /   n*x     
 /__,         
n = 1         
$$\sum_{n=1}^{\infty} n x^{n - 1}$$
Sum(n*x^(n - 1), (n, 1, oo))
The answer [src]
/    x                  
| --------   for |x| < 1
|        2              
| (1 - x)               
|                       
|  oo                   
< ___                   
| \  `                  
|  \      n             
|  /   n*x    otherwise 
| /__,                  
|n = 1                  
\                       
------------------------
           x            
$$\frac{\begin{cases} \frac{x}{\left(1 - x\right)^{2}} & \text{for}\: \left|{x}\right| < 1 \\\sum_{n=1}^{\infty} n x^{n} & \text{otherwise} \end{cases}}{x}$$
Piecewise((x/(1 - x)^2, |x| < 1), (Sum(n*x^n, (n, 1, oo)), True))/x

    Examples of finding the sum of a series