Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 1/(3n-2)(3n+1) 1/(3n-2)(3n+1)
  • (n+2/2n)^n2
  • 15 15
  • (x+4)^n/n^2
  • Identical expressions

  • (x+ four)^n/n^ two
  • (x plus 4) to the power of n divide by n squared
  • (x plus four) to the power of n divide by n to the power of two
  • (x+4)n/n2
  • x+4n/n2
  • (x+4)^n/n²
  • (x+4) to the power of n/n to the power of 2
  • x+4^n/n^2
  • (x+4)^n divide by n^2
  • Similar expressions

  • (x-4)^n/n^2

Sum of series (x+4)^n/n^2



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \           n
  \   (x + 4) 
   )  --------
  /       2   
 /       n    
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{\left(x + 4\right)^{n}}{n^{2}}$$
Sum((x + 4)^n/n^2, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(x + 4\right)^{n}}{n^{2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n^{2}}$$
and
$$x_{0} = -4$$
,
$$d = 1$$
,
$$c = 1$$
then
$$R = -4 + \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2}}{n^{2}}\right)$$
Let's take the limit
we find
$$R = -3$$
The answer [src]
/polylog(2, 4 + x)  for |4 + x| <= 1
|                                   
|   oo                              
| ____                              
| \   `                             
|  \           n                    
<   \   (4 + x)                     
|    )  --------       otherwise    
|   /       2                       
|  /       n                        
| /___,                             
| n = 1                             
\                                   
$$\begin{cases} \operatorname{Li}_{2}\left(x + 4\right) & \text{for}\: \left|{x + 4}\right| \leq 1 \\\sum_{n=1}^{\infty} \frac{\left(x + 4\right)^{n}}{n^{2}} & \text{otherwise} \end{cases}$$
Piecewise((polylog(2, 4 + x), |4 + x| <= 1), (Sum((4 + x)^n/n^2, (n, 1, oo)), True))

    Examples of finding the sum of a series