Mister Exam

Other calculators


n*3^n+1

Sum of series n*3^n+1



=

The solution

You have entered [src]
  oo            
 ___            
 \  `           
  \   /   n    \
  /   \n*3  + 1/
 /__,           
n = 1           
$$\sum_{n=1}^{\infty} \left(3^{n} n + 1\right)$$
Sum(n*3^n + 1, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$3^{n} n + 1$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 3^{n} n + 1$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{3^{n} n + 1}{3^{n + 1} \left(n + 1\right) + 1}\right)$$
Let's take the limit
we find
False

False

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series n*3^n+1

    Examples of finding the sum of a series