Mister Exam

Other calculators


(2/3)^n

Sum of series (2/3)^n



=

The solution

You have entered [src]
  oo      
 ___      
 \  `     
  \      n
  /   2/3 
 /__,     
n = 1     
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n}$$
Sum((2/3)^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\left(\frac{2}{3}\right)^{n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 1$$
and
$$x_{0} = - \frac{2}{3}$$
,
$$d = 1$$
,
$$c = 0$$
then
False

Let's take the limit
we find
False
The rate of convergence of the power series
The answer [src]
2
$$2$$
2
Numerical answer [src]
2.00000000000000000000000000000
2.00000000000000000000000000000
The graph
Sum of series (2/3)^n

    Examples of finding the sum of a series