Mister Exam

Other calculators


1/((2n-1)(2n+5))

Sum of series 1/((2n-1)(2n+5))



=

The solution

You have entered [src]
  oo                     
 ___                     
 \  `                    
  \            1         
   )  -------------------
  /   (2*n - 1)*(2*n + 5)
 /__,                    
n = 1                    
$$\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right) \left(2 n + 5\right)}$$
Sum(1/((2*n - 1)*(2*n + 5)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\left(2 n - 1\right) \left(2 n + 5\right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\left(2 n - 1\right) \left(2 n + 5\right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(2 n + 1\right) \left(2 n + 7\right) \left|{\frac{1}{2 n - 1}}\right|}{2 n + 5}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
           0                  0  
   -1 + 5*e          -14 + 8*e   
--------------- + ---------------
  /          0\     /          0\
4*\-15 + 15*e /   6*\-15 + 15*e /
$$\frac{-14 + 8 e^{0}}{6 \left(-15 + 15 e^{0}\right)} + \frac{-1 + 5 e^{0}}{4 \left(-15 + 15 e^{0}\right)}$$
(-1 + 5*exp_polar(0))/(4*(-15 + 15*exp_polar(0))) + (-14 + 8*exp_polar(0))/(6*(-15 + 15*exp_polar(0)))
Numerical answer [src]
0.255555555555555555555555555556
0.255555555555555555555555555556
The graph
Sum of series 1/((2n-1)(2n+5))

    Examples of finding the sum of a series